Skip to main content
Small, 3D-printed neutron collimators, designed by ORNL’s Jamie Molaison, yield reduced costs and manufacturing times and could enable new types of experiments. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The ExOne Company, the global leader in industrial sand and metal 3D printers using binder jetting technology, announced it has reached a commercial license agreement with Oak Ridge National Laboratory to 3D print parts in aluminum-infiltrated boron carbide.

The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

Since the 1930s, scientists have been using particle accelerators to gain insights into the structure of matter and the laws of physics that govern our world.

ORNL’s Marcel Demarteau inspects experiments along Neutrino Alley at the Spallation Neutron Source, which makes neutrinos as a byproduct. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Marcel Demarteau is director of the Physics Division at the Department of Energy’s Oak Ridge National Laboratory. For topics from nuclear structure to astrophysics, he shapes ORNL’s physics research agenda.

Frontier supercomputer

A multi-institutional team, led by a group of investigators at Oak Ridge National Laboratory, has been studying various SARS-CoV-2 protein targets, including the virus’s main protease. The feat has earned the team a finalist nomination for the Association of Computing Machinery, or ACM, Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research.

Oak Ridge National Laboratory entrance sign

Rufus Ritchie came from Kentucky coal country, a region not known for producing physicists.

Schematic showing cholesterol stiffening DOPC membranes, making them flatter and thicker. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Neutron scattering at ORNL has shown that cholesterol stiffens simple lipid membranes, a finding that may help us better understand the functioning of human cells.

Enzyme activity during organophosphate poisoning

Pick your poison. It can be deadly for good reasons such as protecting crops from harmful insects or fighting parasite infection as medicine — or for evil as a weapon for bioterrorism. Or, in extremely diluted amounts, it can be used to enhance beauty.