Skip to main content
The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

Group of young kids sitting at a lab table.

A group at the Department of Energy's Oak Ridge National Laboratory made a difference for local youth through hands-on projects that connected neutron science and engineering intuitively.

Credit: NAIC Arecibo Observatory, a facility of the NSF; (INSET) Michelle Negron, National Science Foundation

For more than half a century, the 1,000-foot-diameter spherical reflector dish at the Arecibo Observatory in Puerto Rico was the largest radio telescope in the world. Completed in 1963, the dish was built in a natural sinkhole, with the telescope’s feed antenna suspended 500 feet above the dish on a 1.8-million-pound steel platform. Three concrete towers and more than 4 miles of steel cables supported the platform.

The DuAlumin-3D research team developed a lightweight, aluminum alloy for additive manufacturing. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Dean Pierce of ORNL and a research team led by ORNL’s Alex Plotkowski were honored by DOE’s Vehicle Technologies Office for development of novel high-performance alloys that can withstand extreme environments.

Yarom Polsky studio portrait

Yarom Polsky, director of the Manufacturing Science Division, or MSD, at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the American Society of Mechanical Engineers, or ASME.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Herwig shared the impacts of neutron science with Secretary of Energy Jennifer Granholm during a tour of SNS in November 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Ken Herwig's scientific drive crystallized in his youth when he solved a tough algebra word problem in his head while tossing newspapers from his bicycle. He said the joy he felt in that moment as a teenager fueled his determination to conquer mathematical mysteries. And he did.

ORNL’s Yun Liu stands before one of the 10 laser comb-based beam diagnostics stations at the Spallation Neutron Source. The laser comb solves the longstanding problem of measuring changes in the beam across time. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When opportunity meets talent, great things happen. The laser comb developed at ORNL serves as such an example.

Experts at the Manufacturing Demonstration Facility worked with Magotteaux-Pulaski to develop a more durable composition and new 3D-printing process for abrasion-resistant materials. Credit: Magotteaux

For more than 100 years, Magotteaux has provided grinding materials and castings for the mining, cement and aggregates industries. The company, based in Belgium, began its international expansion in 1968. Its second international plant has been a critical part of the Pulaski, Tennessee, economy since 1972.

Image of outerspace

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.