Skip to main content
David McCollum is bringing his interdisciplinary expertise in engineering, economics and policy to several initiatives at Oak Ridge National Laboratory in the global effort to transform energy systems equitably while respecting planetary boundaries. Credit: Lindsay McCollum

David McCollum is using his interdisciplinary expertise, international networks and boundless enthusiasm to lead Oak Ridge National Laboratory’s contributions to the Net Zero World initiative.

An ORNL-led team studied the SARS-CoV-2 spike protein in the trimer state, shown here, to pinpoint structural transitions that could be disrupted to destabilize the protein and negate its harmful effects. Credit: Debsindhu Bhowmik/ORNL, U.S. Dept. of Energy

To explore the inner workings of severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, researchers from ORNL developed a novel technique.

This protein drives key processes for sulfide use in many microorganisms that produce methane, including Thermosipho melanesiensis. Researchers used supercomputing and deep learning tools to predict its structure, which has eluded experimental methods such as crystallography.  Credit: Ada Sedova/ORNL, U.S. Dept. of Energy

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory and the Georgia Institute of Technology is using supercomputing and revolutionary deep learning tools to predict the structures and roles of thousands of proteins with unknown functions.

Burak Ozpineci is a globally recognized leader in power electronics research. He was named an ORNL Corporate Fellow in fall 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Burak Ozpineci started out at ORNL working on a novel project: introducing silicon carbide into power electronics for more efficient electric vehicles. Twenty years later, the car he drives contains those same components.

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Erdem Asa is leveraging his power electronics expertise to adapt ORNL’s wireless charging technology to unmanned aerial vehicles. Credit: Erdem Asa/ORNL, U.S. Dept. of Energy

Having co-developed the power electronics behind ORNL’s compact, high-level wireless power technology for automobiles, Erdem Asa is looking to the skies to apply the same breakthrough to aviation.

Hope Corsair. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

When Hope Corsair’s new colleagues at Oak Ridge National Laboratory ask her about her area of expertise, she tells them it’s “context.” Her goal as an energy economist is to make sure ORNL’s breakthroughs have the widest possible

AIST Conference

As the United States transitions to clean energy, the country has an ambitious goal: cut carbon dioxide emissions in half by the year 2030, if not before. One of the solutions to help meet this challenge is found at ORNL as part of the Better Plants Program.

ORNL used novel additive manufacturing techniques to 3D print channel fasteners for Framatome’s boiling water reactor fuel assembly. Four components, like the one shown here, were installed at the TVA Browns Ferry nuclear plant. Credit: Framatome

Four first-of-a-kind 3D-printed fuel assembly brackets, produced at the Department of Energy’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory, have been installed and are now under routine operating

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus.