Skip to main content
Wall of black computer chords with blue wiring

Researchers from ORNL have developed a new application to increase efficiency in memory systems for high performance computing. Rather than allow data to bog down traditional memory systems in supercomputers and impact performance, the team from ORNL, along with researchers from the University of Tennessee, Knoxville, created a framework to manage data more efficiently with memory systems that employ more complex structures. 

A deep look inside a cell membrane showing the production of materials from plant biomass, shown with shapes that consist of four green balls connected with a red ball on one end, dotted with smaller white balls on each surface.

Scientists at ORNL and the University of Cincinnati achieved a breakthrough in understanding the vulnerability of microbes to the butanol they produce during fermentation of plant biomass. The discovery could pave the way for more efficient production of domestic fuels, chemicals and materials.

Different groups of proteins shown in different colors combine and attach to a broken strand of DNA.

Researchers at Georgia State University used the Summit supercomputer to study an elaborate molecular pathway called nucleotide excision repair. Decoding NER’s sophisticated sequence of events and the role of PInC in the pathway could provide key insights into developing novel treatments and preventing conditions that lead to premature aging and certain types of cancer.

Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to Oak Ridge National Laboratory, Energy Secretary Chris Wright compared the urgency of the Lab’s World War II beginnings to today’s global race to lead in artificial intelligence, calling for a “Manhattan Project 2.”

Six images fanned out across the right side of the page with the first page showcasing the report cover. To the right hand side is a green oak leaf.

A workshop led by scientists at ORNL sketched a road map toward a longtime goal: development of autonomous, or self-driving, next-generation research laboratories. 

This is an image of a photon chip, it's a black background with green squiggle lines across it, with two blue lines running horizontally in the middle with an inch in between.

Quantum information scientists at ORNL successfully demonstrated a device that combines key quantum photonic capabilities on a single chip for the first time.

Computer rendering of the FRIB Decay Station initiator, featuring cylindrical components, vacuum chambers, and a greenish glow, used to measure the decays of exotic isotopes at FRIB.

Scientists at ORNL are using advanced germanium detectors to explore fundamental questions in nuclear physics, such as the nature of neutrinos and the matter-antimatter imbalance. The ongoing LEGEND project, an international collaboration, aims to discover neutrinoless double beta decay, which could significantly advance the understanding of the universe.

Hugh O'Neil, director or ORNL's Center for Structural Molecular Biology is sitting in the lab on a stool, hand on desk with glasses on. There are lab related items blurred in the foreground.

Hugh O’Neill’s lifelong fascination with the complexities of the natural world drives his research at ORNL, where he’s using powerful neutron beams to dive deep into the microscopic realm of biological materials and unlock secrets for better production of domestic biofuels and bioproducts.

Close up image of Quantum Science Center poster with the QSC logo.

Registration for the Quantum Science Center’s Summer School is open now through Feb. 28, 2025. Conducted in partnership with the Quantum Science Center at ORNL, this year’s summer school will be hosted at the Purdue Quantum Science and Engineering Institute Apr. 21 through Apr. 25, 2025, on the Purdue University campus.

Image of four tall blocks creating a square with each block a different color, two gray, one green and one blue. That shape is sitting on a flat set of squares rotating the same color pattern

A recent study led by quantum researchers at ORNL proved popular among the science community interested in building a more reliable quantum network. The study, led by ORNL’s Hsuan-Hao Lu, details development of a novel quantum gate that operates between two photonic degrees of freedom — polarization and frequency.