Skip to main content
Enzyme activity during organophosphate poisoning

Pick your poison. It can be deadly for good reasons such as protecting crops from harmful insects or fighting parasite infection as medicine — or for evil as a weapon for bioterrorism. Or, in extremely diluted amounts, it can be used to enhance beauty.

four circle diffractometer

A UCLA-led team that discovered the first intrinsic ferromagnetic topological insulator – a quantum material that could revolutionize next-generation electronics – used neutrons at Oak Ridge National Laboratory to help verify their finding.

 Using the ASGarD mathematical framework, scientists can model and visualize the electric fields, shown as arrows, circling around magnetic fields that are colorized to represent field magnitude of a fusion plasma. Credit: David Green/ORNL

Combining expertise in physics, applied math and computing, Oak Ridge National Laboratory scientists are expanding the possibilities for simulating electromagnetic fields that underpin phenomena in materials design and telecommunications.

Matthew Stone

The 75th anniversary of the final voyage of the USS Indianapolis and her brave crew is Thursday, July 30. The US Navy warship was on a top-secret mission across the Pacific Ocean to deliver war materials that marked the conclusion of the Manhattan Project.

ORNL’s Drew Elliott served as a major collaborator in upgrading the Princeton Plasma Physics Laboratory’s Lithium Tokamak Experiment-Beta. Credit: Robert Kaita, Princeton Plasma Physics Laboratory

Lithium, the silvery metal that powers smart phones and helps treat bipolar disorders, could also play a significant role in the worldwide effort to harvest on Earth the safe, clean and virtually limitless fusion energy that powers the sun and stars.

Computational biophysicist Ada Sedova is using experiments and high-performance computing to explore the properties of biological systems and predict their form and function, including research to accelerate drug discovery for COVID-19. Photo credit: Jason Richards, Oak Ridge National Laboratory, U.S. Dept. of Energy.

Ada Sedova’s journey to Oak Ridge National Laboratory has taken her on the path from pre-med studies in college to an accelerated graduate career in mathematics and biophysics and now to the intersection of computational science and biology

Yanwen Zhang

In the search to create materials that can withstand extreme radiation, Yanwen Zhang, a researcher at the Department of Energy’s Oak Ridge National Laboratory, says that materials scientists must think outside the box.

ORNL scientists are currently using Proto-MPEX to perform necessary research and development that is needed to build MPEX. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Temperatures hotter than the center of the sun. Magnetic fields hundreds of thousands of times stronger than the earth’s. Neutrons energetic enough to change the structure of a material entirely.

Using the single-crystal diffractometer TOPAZ, Oak Ridge National Laboratory confirmed the exact position of deuterium atoms from selective deuteration of benzene molecules. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Scientists have found a new method to strategically add deuterium to benzene, an aromatic compound commonly found in crude oil. When applied to the active ingredient of drugs to incorporate deuterium, it could dramatically improve the drugs’ efficacy and safety and even introduce new medicines.

At the U.S. Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.