Skip to main content
The Frontier exascale supercomputer at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL has joined a global consortium of scientists from federal laboratories, research institutes, academia and industry to address the challenges of building large-scale artificial intelligence systems and advancing trustworthy and reliable AI for

Conceptual art depicts machine learning finding an ideal material for capacitive energy storage. Its carbon framework (black) has functional groups with oxygen (pink) and nitrogen (turquoise). Credit: Tao Wang/ORNL, U.S. Dept. of Energy

Guided by machine learning, chemists at ORNL designed a record-setting carbonaceous supercapacitor material that stores four times more energy than the best commercial material.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

From left are Analytics and AI Methods at Scale group leader Feiyi Wang, technical lead Mike Matheson and research scientist Hao Lu.

The team that built Frontier set out to break the exascale barrier, but the supercomputer’s record-breaking didn’t stop there.

Staff working on construction and facility updates in preparation for the Frontier, the world’s first exascale supercomputer.

Making room for the world’s first exascale supercomputer took some supersized renovations.

Frontier’s exascale power enables the Energy, Exascale and Earth System Model-Multiscale Modeling Framework — or E3SM-MMF — project to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Mark Taylor/Sandia National Laboratories, U.S. Dept. of Energy

The world’s first exascale supercomputer will help scientists peer into the future of global climate change and open a window into weather patterns that could affect the world a generation from now.

ORNL scientists developed a method that improves the accuracy of the CRISPR Cas9 gene editing tool used to modify microbes for renewable fuels and chemicals production. This research draws on the lab’s expertise in quantum biology, artificial intelligence and synthetic biology. Credit: Philip Gray/ORNL, U.S. Dept. of Energy

Scientists at ORNL used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

text

Waiting for answers surrounding a healthcare condition can be as stressful as the condition itself. Maria Mahbub, a research collaborator at Oak Ridge National Laboratory, is developing technology that could help providers and patients get answers sooner.

Photo 1: Event organizers from the Nuclear Energy Fuel Cycle Division. Credit: Carol Morgan/ORNL, U.S. Dept. of Energy

The heat is on at this year’s Molten Salt Reactor Workshop – where top research and industry minds are melding to advance development on molten salt technology – at ORNL.   

Professional women in the IAEA’s Lise Meitner Programme 2023 cohort and supporters assembled at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory hosted the second  2023 cohort of the International Atomic Energy Agency’s Lise Meitner Programme in October.