Skip to main content
SNS researchers

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Oak Ridge National Laboratory scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, Oak Ridge National Laboratory, U.S. Dept. of Energy

If humankind reaches Mars this century, an Oak Ridge National Laboratory-developed experiment testing advanced materials for spacecraft may play a key role. 

Beneficial microbes, shown in red, aid Sphagnum mosses in using nitrogen from the air to fuel plant growth. ORNL scientists have shown this nitrogen fixing activity declines with warming temperatures. Credit: David Weston/Oak Ridge National Laboratory, U.S. Dept. of Energy

A team of scientists found that critical interactions between microbes and peat moss break down under warming temperatures, impacting moss health and ultimately carbon stored in soil.

Elizabeth Herndon takes a soil sample at a field site outside Abisko, Sweden in July 2019.

Elizabeth Herndon believes in going the distance whether she is preparing to compete in the 2020 Olympic marathon trials or examining how metals move through the environment as a geochemist at the Department of Energy’s Oak Ridge National Laboratory.

Misha Krassovski, a computer scientist at Oak Ridge National Laboratory, stands in front of the Polarstern, a 400-foot long German icebreaker. Krassovski lived aboard the Polarstern during the first leg of the MOSAiC mission, the largest polar expedition ever. Credit: Misha Krassovski/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the vast frozen whiteness of the central Arctic, the Polarstern, a German research vessel, has settled into the ice for a yearlong float.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

Neutrons—Insight into human tissue

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor to better understand how certain cells in human tissue bond together.

As part of DOE’s HPC4Mobility initiative ORNL researchers developed machine learning algorithms that can control smart traffic lights at intersections to facilitate the smooth flow of traffic and increase fuel efficiency.

A modern, healthy transportation system is vital to the nation’s economic security and the American standard of living. The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is engaged in a broad portfolio of scientific research for improved mobility

Ethan Coon uses math and computational science to model the flow of above and belowground water in watersheds.

As a computational hydrologist at Oak Ridge National Laboratory, Ethan Coon combines his talent for math with his love of coding to solve big science questions about water quality, water availability for energy production, climate change, and the