Skip to main content
Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

Researchers used the open-source Community Earth System Model to simulate the effects that extreme climatic conditions have on processes like land carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers from Oak Ridge National Laboratory and Northeastern University modeled how extreme conditions in a changing climate affect the land’s ability to absorb atmospheric carbon — a key process for mitigating human-caused emissions. They found that 88% of Earth’s regions could become carbon emitters by the end of the 21st century. 

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

ZEISS Head of Additive Manufacturing Technology Claus Hermannstaedter, left, and ORNL Interim Associate Laboratory Director for Energy Science and Technology Rick Raines sign a licensing agreement that allows ORNL’s machine-learning algorithm, Simurgh, to be used for rapid evaluations of 3D-printed components with industrial X-ray computed tomography, or CT. Using machine learning in CT scanning is expected to reduce the time and cost of inspections of 3D-printed parts by more than ten times.

A licensing agreement between the Department of Energy’s Oak Ridge National Laboratory and research partner ZEISS will enable industrial X-ray computed tomography, or CT, to perform rapid evaluations of 3D-printed components using ORNL’s machine

Innovation Crossroads cohort 7

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at ORNL. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

ORNL’s Fernanda Santos examines a soil sample at an NGEE Arctic field site in the Alaskan tundra in June 2022. Credit: Amy Breen, University of Alaska Fairbanks.

Wildfires are an ancient force shaping the environment, but they have grown in frequency, range and intensity in response to a changing climate. At ORNL, scientists are working on several fronts to better understand and predict these events and what they mean for the carbon cycle and biodiversity.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Colleen Iversen is the new director of NGEE Arctic, leading a large cross-disciplinary team of scientists in pursuit of a better understanding of Arctic climate processes. Credit: ORNL, U.S. Dept. of Energy

Colleen Iversen, ecosystem ecologist, group leader and distinguished staff scientist, has been named director of the Next-Generation Ecosystem Experiments Arctic, or NGEE Arctic, a multi-institutional project studying permafrost thaw and other climate-related processes in Alaska.

An Oak Ridge National Laboratory study compared classical computing techniques for compressing data with potential quantum compression techniques. Credit: Getty Images

A study led by Oak Ridge National Laboratory researchers identifies a new potential application in quantum computing that could be part of the next computational revolution.