Skip to main content
A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

ORNL seismic researcher Chengping Chai placed seismic sensors on the ground at various distances from an ORNL nuclear reactor to learn whether they could detect its operating state. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Like most scientists, Chengping Chai is not content with the surface of things: He wants to probe beyond to learn what’s really going on. But in his case, he is literally building a map of the world beneath, using seismic and acoustic data that reveal when and where the earth moves.

ORNL and Enginuity researchers proved that a micro combined heat and power prototype, or mCHP, with an opposed piston engine can achieve more than 93% overall energy efficiency. The environmentally friendly mCHP can replace a back-up generator or traditional hot water heater. Credit: ORNL, U.S. Department of Energy

ORNL researchers, in collaboration with Enginuity Power Systems, demonstrated that a micro combined heat and power prototype, or mCHP, with a piston engine can achieve an overall energy efficiency greater than 93%. 

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Jun Qu of ORNL shows stainless-steel disks

Scientists at ORNL have invented a coating that could dramatically reduce friction in common load-bearing systems with moving parts, from vehicle drive trains to wind

Stan David, retired ORNL scientist, has received the Joining and Welding Science Award.

Stan David, retired scientist and Corporate Fellow Emeritus at the Department of Energy’s Oak Ridge National Laboratory, was awarded the Joining and Welding Science Award from the Joining and Welding Research Institute at Osaka University, Japan.

Mali Balasubramanian made a rewarding mid-career shift to focus on studying new battery materials and systems using X-ray spectroscopy and other methods. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Having passed the midpoint of his career, physicist Mali Balasubramanian was part of a tight-knit team at a premier research facility for X-ray spectroscopy. But then another position opened, at ORNL— one that would take him in a new direction.

Rigoberto Advincula

Rigoberto Advincula, a renowned scientist at ORNL and professor of Chemical and Biomolecular Engineering at the University of Tennessee, has won the Netzsch North American Thermal Analysis Society Fellows Award for 2023.

ORNL’s Debangshu Mukherjee was named an npj Computational Materials “Reviewer of the Year.”

ORNL’s Debangshu Mukherjee has been named an npj Computational Materials “Reviewer of the Year.”

Jerry Parks leads the Molecular Biophysics group at ORNL, leveraging his expertise in computational chemistry and bioinformatics to unlock the inner workings of proteins—molecules that govern cellular structure and function and are essential to life. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

When reading the novel Jurassic Park as a teenager, Jerry Parks found the passages about gene sequencing and supercomputers fascinating, but never imagined he might someday pursue such futuristic-sounding science.