Skip to main content
Default image of ORNL entry sign
Some of the 300 million tires discarded each year in the United States alone could be used in supercapacitors for vehicles and the electric grid using a technology developed at the Department of Energy’s Oak Ridge National Laboratory and Drexel University. By em...
OAK RIDGE, Tenn., Sept. 14, 2015 – A catalyst being developed by researchers at the Department of Energy’s Oak Ridge National Laboratory could overcome one of the key obstacles still preventing automobile engines from running more cleanly and efficiently.

A catalyst being developed by researchers at the Department of Energy’s Oak Ridge National Laboratory could overcome one of the key obstacles still preventing automobile engines from running more cleanly and efficiently. The mixed oxide catalyst could solve the ...

Secretary of Commerce Penny Pritzker inspects the Institute for Advanced Composites Manufacturing Innovation (IACMI) at Oak Ridge National Laboratory, hosted by Craig Blue, IACMI’s chief executive officer. (Jason Richards photo).
Secretary of Commerce Penny Pritzker visited the new Institute for Advanced Composites Manufacturing Innovation (IACMI) at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, praising the advances in manufacturing technology taking place in East T...
Material dissolved in the liquid at the port tip is immediately transported into the mass spectrometer, ionized, detected and characterized.
In mere seconds, a system developed at the Department of Energy’s Oak Ridge National Laboratory can identify and characterize a solid or liquid sample, providing a valuable tool with applications in material science, forensics, pharmaceuticals, biology and chemistry.
Default image of ORNL entry sign

A new technology developed by the U.S. Department of Energy’s Critical Materials Institute that aids in the recycling, recovery and extraction of rare earth minerals has been licensed to U.S. Rare Earths, Inc.

Oak Ridge National Laboratory
Oak Ridge National Laboratory researchers have invented an automated droplet-based sampling probe system that scientists at the University of North Carolina at Greensboro are using for quick identification of bioactive compounds in fungi. As more medicines are identified from natur...
Oak Ridge National Laboratory
Lightweight powertrain materials could play a hefty role in helping automakers meet stricter Corporate Average Fuel Economy standards, and Oak Ridge National Laboratory’s supercomputer could accelerate their deployment. Working with industry, ORNL researchers are developing material...
Complex, scalable arrays of semiconductor heterojunctions—promising building blocks for future electronics.
Semiconductors, metals and insulators must be integrated to make the transistors that are the electronic building blocks of your smartphone, computer and other microchip-enabled devices. Today’s transistors are miniscule—a mere 10 nanometers wide—and forme...
Oak Ridge National Laboratory
Gains in engine efficiency are often accompanied by emissions challenges, but a catalyst developed by Oak Ridge National Laboratory researchers could provide a solution. The mixed oxide catalyst features low-cost materials and potentially overcomes the problem of inhibition, in which...
Inserting helium atoms (visualized as a red balloon) into a crystalline film (gold) allowed Oak Ridge National Laboratory researchers to control the material’s elongation in a single direction.
Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions. The team’s technique, published in Physical Review Letter...