Skip to main content
From left, Michael Starke, Steven Campbell and Madhu Chinthavali of ORNL discuss the configuration of the power electronics hub demonstrated with hardware in the low-voltage lab at GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL recently demonstrated a new technology to better control how power flows to and from commercial buildings equipped with solar, wind or other renewable energy generation.

Melton Hill Dam

To further the potential benefits of the nation’s hydropower resources, researchers at Oak Ridge National Laboratory have developed and maintain a comprehensive water energy digital platform called HydroSource.

Magnetic quantum material broadens platform for probing next-gen information technologies

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.

Innovation Crossroads Cohort Six includes: Bianca Bailey, Agriwater; Rajan Kumar, Ateois Systems; Alex Stiles, Vitriform3D; Kim Tutin, Captis Aire; Anca Timofte, Holocene Climate; and Pete Willette, facil.ai. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory’s Innovation Crossroads program welcomes six new science and technology innovators from across the United States to the sixth cohort. 

These images show increasing levels of magnification of phytoliths in the leaves of poplar trees, a key biofuel crop, imaged using ORNL’s specialized microscopy-spectroscopy. Credit: Elizabeth Herndon/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory are closer to unlocking the secrets to better soil carbon sequestration by studying the tiny, sand-like silicon deposits called phytoliths in plants.

non-powered dam

Although more than 92,000 dams populate the country, the vast majority — about 89,000 — do not generate electricity through hydropower.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

With seismic and acoustic data recorded by remote sensors near ORNL’s High Flux Isotope Reactor, researchers could predict whether the reactor was on or off with 98% accuracy. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

A large generator is installed at the Meldahl hydropower plant in Kentucky. The energy sector anticipates longer lead times in procuring such large components for increasing construction and modernization of U.S. hydropower plants. Credit: American Municipal Power

A new Department of Energy report produced by Oak Ridge National Laboratory identifies several supply chain must-haves in maintaining the pivotal role hydropower will play in decarbonizing the nation’s grid.

Researchers at Oak Ridge National Laboratory demonstrated center-of-mass scanning transmission electron microscopy to observe lithium along with heavier elements in battery materials at atomic resolution. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated an electron microscopy technique for imaging lithium in energy storage materials, such as lithium ion batteries, at the atomic scale.