Skip to main content
Illustration showing structure of Bi2Se3-EuS bilayer film. (Image credit: ORNL/Jill Hemman)
A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology. Researchers at the Department of Energy’s Oak Ridge Natio...
Default image of ORNL entry sign

Four Oak Ridge National Laboratory researchers specializing in environmental, biological and computational science are among 49 recipients of Department of Energy's Office of Science Early Career Research Program awards. The Early Career Research Program, now in its ...

This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons.

Researchers at the Department of Energy’s Oak Ridge National Laboratory used neutrons to uncover novel behavior in materials that holds promise for quantum computing. The findings, published in Nature Materials, provide evidence for long-sought phenomena in a two-dim...

New HPC4Mfg projects pair manufacturers with resources at Oak Ridge, Lawrence Berkeley and Lawrence Livermore national laboratories. From left to right are Robin Miles, LLNL; Horst Simon, LBNL; Peter Nugent, LBNL; Trish Damkroger, LLNL; Dona Crawford, LLN

The Department of Energy’s Oak Ridge National Laboratory will support four new industry projects announced today as part of DOE’s High Performance Computing for Manufacturing (HPC4Mfg) Program. The program pairs selected companies with national labs, including ORNL...

Illustration of the structure of a phosphoglycerate kinase protein that was subjected to molecular dynamics simulations. The relative motions of the red and blue domains of the proteins are highly complex, and can be described in terms of motion of a conf
Supercomputing simulations at the Department of Energy’s Oak Ridge National Laboratory could change how researchers understand the internal motions of proteins that play functional, structural and regulatory roles in all living organisms. The team’s results are featur...
DOE's INCITE program promotes transformational advances in science and technology through large allocations of time on state-of-the-art supercomputers, including the Titan supercomputer at ORNL.

The U.S. Department of Energy’s Office of Science announced 56 projects aimed at accelerating discovery and innovation to address some of the world’s most challenging scientific questions. The projects will share 5.8 billion core hours on America’s two most powerful s...

Conceptual art connects the atomic underpinnings of the neutron-rich calcium-48 nucleus with the Crab Nebula, which has a neutron star at its heart. Zeros and ones depict the computational power needed to explore objects that differ in size by 18 orders o
An international team led by Gaute Hagen of the Department of Energy’s Oak Ridge National Laboratory used America’s most powerful supercomputer, Titan, to compute the neutron distribution and related observables of calcium-48
A surfactant template guides the self-assembly of functional polymer structures in an aqueous solution. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; image by Youngkyu Han and Renee Manning.
The efficiency of solar cells depends on precise engineering of polymers that assemble into films 1,000 times thinner than a human hair. Today, formation of that polymer assembly requires solvents that can harm the environment, but scientists at the Department of En...
With a nano-ring-based toroidal trap, cold polar molecules near the gray shaded surface approaching the central region may be trapped within a nanometer scale volume.
Single atoms or molecules imprisoned by laser light in a doughnut-shaped metal cage could unlock the key to advanced storage devices, computers and high-resolution instruments. In a paper published in Physical Review A, a team composed of Ali Passian of the Depa...
Default image of ORNL entry sign
A microscope being developed at the Department of Energy’s Oak Ridge National Laboratory will allow scientists studying biological and synthetic materials to simultaneously observe chemical and physical properties on and beneath the surface.