Skip to main content
A graphical representation about a gene in a poplar tree. There is a close up of a tree to the right and the far left-top corner. There is a strand of DNA going down the middle of the image with an ant and two small circles showing the organisms inside the DNA

A team of scientists with two Department of Energy Bioenergy Research Centers — the Center for Bioenergy Innovation at Oak Ridge National Laboratory and the Center for Advanced Bioenergy and Bioproducts Innovation at the University of Illinois Urbana-Champaign — identified a gene in a poplar tree that enhances photosynthesis and can boost tree height by about 30% in the field and by as much as 200% in the greenhouse. 

Pictured is the process of converting greenhouse gases to syngas, shown with a city scape with CO2 and CH4 turning to a mountain landscape with CO and H2

A chemical reaction can convert two polluting greenhouse gases into valuable building blocks for cleaner fuels and feedstocks, but the high temperature required for the reaction also deactivates the catalyst. A team led by ORNL has found a way to thwart deactivation. The strategy may apply broadly to other catalysts.

Pictured here is the The S-adenosylmethionine molecule

Researchers have identified a molecule essential for the microbial conversion of inorganic mercury into the neurotoxin methylmercury, moving closer to blocking the dangerous pollutant before it forms. 

An observation tower overlooks a Panama rainforest

Plants the world over are absorbing about 31% more carbon dioxide than previously thought. The research, detailed in the journal Nature, is expected to improve Earth system simulations that scientists use to predict the future climate, and spotlights the importance of natural carbon sequestration for greenhouse gas mitigation. 

A graphic representation of AI

The Department of Energy announced a $67 million investment in several AI projects from institutions in both government and academia as part of its AI for Science initiative. Six ORNL-led (or co-led) projects received funding.

FAMU, FSU, FAMU-FSU College of Engineering, and Oak Ridge National Laboratory (ORNL) leadership

Oak Ridge National Laboratory has launched its Neutron Nexus pilot program with Florida Agricultural & Mechanical University and Florida State University through the FAMU-FSU College of Engineering. The first program of its kind nationwide, it’s aimed at broadening and diversifying the scientific user community with outreach to universities and colleges. 

This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

pulsed laser deposition setup

In a game-changing study, ORNL scientists developed a deep learning model — a type of artificial intelligence that mimics human brain function — to analyze high-speed videos of plasma plumes during a process called pulsed laser deposition.

Matthew Loyd

ORNL’s Matthew Loyd will receive a Department of Energy Office of Science Early Career Research award. 

forest under study in Panama

Scientists using high-resolution aerial scans and computational modeling concluded that wildfires, storms and selective logging have become key drivers behind rainforest carbon emissions, outpacing clear-cutting practices.