Skip to main content
Andrew Lupini

Andrew Lupini, a scientist and inventor at ORNL, has been elected Fellow of the Microscopy Society of America.

An Oak Ridge National Laboratory study compared classical computing techniques for compressing data with potential quantum compression techniques. Credit: Getty Images

A study led by Oak Ridge National Laboratory researchers identifies a new potential application in quantum computing that could be part of the next computational revolution.

Marm Dixit, a Weinberg Distinguished Staff Fellow at Oak Ridge National Laboratory, was honored for his work on imaging techniques for solid state batteries. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Marm Dixit, a Weinberg Distinguished Staff Fellow at ORNL has received the 2023 Rosalind Franklin Young Investigator Award.

An AI-generated image representing atoms and artificial neural networks. Credit: Maxim Ziatdinov, ORNL

Researchers at ORNL have developed a machine-learning inspired software package that provides end-to-end image analysis of electron and scanning probe microscopy images.

Ho Nyung Lee

Ho Nyung Lee, a condensed matter physicist at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the Materials Research Society.

Mickey Wade

Mickey Wade has been named associate laboratory director for the Fusion and Fission Energy and Science Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

The licensing and leadership team behind AMIGO. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A technology developed at ORNL and used by the U.S. Naval Information Warfare Systems Command, or NAVWAR, to test the capabilities of commercial security tools has been licensed to cybersecurity firm Penguin Mustache to create its Evasive.ai platform. The company was founded by the technology’s creator, former ORNL scientist Jared M. Smith, and his business partner, entrepreneur Brandon Bruce.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.

Even small movements of hydrogen, shown in yellow, were found to cause large energy shifts in the attached iron atoms, shown in silver, which could be of interest in creating novel chemical reactions. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from Yale University and ORNL collaborated on neutron scattering experiments to study hydrogen atom locations and their effects on iron in a compound similar to those commonly used in industrial catalysts.