Skip to main content
Low-cost, compact, printed sensor that can collect and transmit data on electrical appliances for better load monitoring

Scientists at Oak Ridge National Laboratory have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

 

In ORNL’s Low Activation Materials Development and Analysis Laboratory, Field makes use of a transmission electron microscope to examine a sample made with a focused ion beam. He investigates the defects produced in a FeCrAl alloy bombarded with neutrons in HFIR. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Kevin Field at the Department of Energy’s Oak Ridge National Laboratory synthesizes and scrutinizes materials for nuclear power systems that must perform safely and efficiently over decades of irradiation.

Neutron scattering allowed direct observation of how aurein induces lateral segregation in the bacteria membranes, which creates instability in the membrane structure. This instability causes the membranes to fail, making harmful bacteria less effective.

As the rise of antibiotic-resistant bacteria known as superbugs threatens public health, Oak Ridge National Laboratory’s Shuo Qian and Veerendra Sharma from the Bhaba Atomic Research Centre in India are using neutron scattering to study how an antibacterial peptide interacts with and fights harmful bacteria.

To develop complex materials with superior properties, Vera Bocharova uses diverse methods including broadband dielectric spectroscopy. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Jason Richards

Vera Bocharova at the Department of Energy’s Oak Ridge National Laboratory investigates the structure and dynamics of soft materials—polymer nanocomposites, polymer electrolytes and biological macromolecules—to advance materials and technologies for energy, medicine and other applications.

As part of a preliminary study, ORNL scientists used critical location data collected from Twitter to map the location of certain power outages across the United States.

Gleaning valuable data from social platforms such as Twitter—particularly to map out critical location information during emergencies— has become more effective and efficient thanks to Oak Ridge National Laboratory.

An ORNL-developed graphite foam, which could be used in plasma-facing components in fusion reactors, performed well during testing at the Wendlestein 7-X stellarator in Germany.

Scientists have tested a novel heat-shielding graphite foam, originally created at Oak Ridge National Laboratory, at Germany’s Wendelstein 7-X stellarator with promising results for use in plasma-facing components of fusion reactors.

Jon Poplawsky of Oak Ridge National Laboratory combines atom probe tomography (revealed by this LEAP 4000XHR instrument) with electron microscopy to characterize the compositions, structures, and functions of materials for energy and information technolog

Jon Poplawsky, a materials scientist at the Department of Energy’s Oak Ridge National Laboratory, develops and links advanced characterization techniques that improve our ability to see and understand atomic-scale features of diverse materials

2018-P07635 BL-6 user - Univ of Guelph-6004R_sm[2].jpg

A team of scientists, led by University of Guelph professor John Dutcher, are using neutrons at ORNL’s Spallation Neutron Source to unlock the secrets of natural nanoparticles that could be used to improve medicines.

X1800-REED-Maritime Risk Symposium 2018 logo-AM V5-01.jpg

Thought leaders from across the maritime community came together at Oak Ridge National Laboratory to explore the emerging new energy landscape for the maritime transportation system during the Ninth Annual Maritime Risk Symposium.

hvac_grid03.png

Oak Ridge National Laboratory scientists have devised a method to control the heating and cooling systems of a large network of buildings for power grid stability—all while ensuring the comfort of occupants.