Skip to main content
Two green oak leaves with other matter in two circles above them. To the right, a yellow blob. To the left, a brown material inside a bowl.

Oak Ridge National Laboratory scientists ingeniously created a sustainable, soft material by combining rubber with woody reinforcements and incorporating “smart” linkages between the components that unlock on demand.

A tan and black cylinder that is made up of three long tubes vertically with a black line horizontally going across the bottom and the top. There is a piece laying on the floor that says ORNL.

ORNL researchers used electron-beam additive manufacturing to 3D-print the first complex, defect-free tungsten parts with complex geometries. 

Chelsea Chen, polymer physicist at ORNL, stands in front of an eight-channel potentiostat and temperature chamber used for battery and electrochemical testing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Chelsea Chen, a polymer physicist at ORNL, is studying ion transport in solid electrolytes that could help electric vehicle battery charges last longer.

Alexey Serov researches ways to improve hydrogen fuel cells and materials and the electrolysis process. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

It would be a challenge for any scientist to match Alexey Serov’s rate of inventions related to green hydrogen fuel. But this researcher at ORNL has 84 patents with at least 35 more under review, so his electrifying pace is unlikely to slow down any time soon.

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Researchers at Oak Ridge National Laboratory discovered a tug-of-war strategy to enhance chemical separations needed to recover critical materials. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

ORNL scientists combined two ligands, or metal-binding molecules, to target light and heavy lanthanides simultaneously for exceptionally efficient separation.

Andrea Delgado, Distinguished Staff Fellow at Oak Ridge National Laboratory, uses quantum computing to help elucidate the fundamental particles of the universe. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Andrea Delgado is looking for elementary particles that seem so abstract, there appears to be no obvious short-term benefit to her research.

Jeff Foster, Distinguished Staff Fellow at Oak Ridge National Laboratory, is looking for ways to control polymer sequencing for a variety of uses. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemist Jeff Foster is looking for ways to control sequencing in polymers that could result in designer molecules to benefit a variety of industries, including medicine and energy.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

Researchers observe T-shaped cluster drives lanthanide separation system during liquid-liquid extraction. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.