Skip to main content
Consumers have a new resource for finding plug-in electric and fuel cell vehicle tax credits. Current owners and those considering an electric vehicle purchase can access a free tool developed by ORNL researchers for fueleconomy.gov. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed an online resource to help consumers understand the electric vehicle tax credits available through the Inflation Reduction Act.

Phil Snyder

When virtually unlimited energy from fusion becomes a reality on Earth, Phil Snyder and his team will have had a hand in making it happen.

Stephen Dahunsi. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Stephen Dahunsi’s desire to see more countries safely deploy nuclear energy is personal. Growing up in Nigeria, he routinely witnessed prolonged electricity blackouts as a result of unreliable energy supplies. It’s a problem he hopes future generations won’t have to experience.

One of the proteins identified through a new ORNL-developed approach could be key to communications between poplar trees and beneficial microbes that can help boost poplar trees’ growth, carbon storage and climate resilience. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have identified specific proteins and amino acids that could control bioenergy plants’ ability to identify beneficial microbes that can enhance plant growth and storage of carbon in soils.

Through the Honnold Foundation and Casa Pueblo, solar panels are installed in Adjuntas, Puerto Rico, and hooked to microgrids with battery storage. ORNL researchers are developing a microgrid orchestrator to manage the microgrids together for increased long-term electrical reliability. Credit: Fabio Andrade

ORNL researchers Ben Ollis and Max Ferrari will be in Adjuntas to join the March 18 festivities but also to hammer out more technical details of their contribution to the project: making the microgrids even more reliable.

Ben Thomas poses with Dr. Richard Mu (Tennessee State University), Moody Altamimi (ORNL), Dr. Lin Li (Tennessee State University), and Ja’ Wanda Grant (ORNL) during a visit to ORNL to discuss education programs

Ben Thomas recalled the moment he, as a co-op student at ORNL, fell in love with computer programming. “It was like magic.” Almost five decades later, he strives to bring the same feeling to students through education and experience in fields that could benefit nuclear nonproliferation.

Fungal geneticist Joanna Tannous is gaining a better understanding of the genetic processes behind fungal life to both combat plant disease and encourage beneficial processes like soil carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Joanna Tannous has found the perfect organism to study to satisfy her deeply curious nature, her skills in biochemistry and genetics, and a drive to create solutions for a better world. The organism is a poorly understood life form that greatly influences its environment and is unique enough to deserve its own biological kingdom: fungi.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

ORNL researchers have developed a way to manage car batteries of different types and sizes as energy storage for the power grid. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

When aging vehicle batteries lack the juice to power your car anymore, they may still hold energy. Yet it’s tough to find new uses for lithium-ion batteries with different makers, ages and sizes. A solution is urgently needed because battery recycling options are scarce.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.