Skip to main content
An illustration shows how the composite is pressed into a seamless aluminum liner, which is then sealed with an aluminum powder cap. The research is sponsored by the DOE Isotope Program. Credit: Chris Orosco/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a method to simplify one step of radioisotope production — and it’s faster and safer.

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.