Skip to main content
These images show increasing levels of magnification of phytoliths in the leaves of poplar trees, a key biofuel crop, imaged using ORNL’s specialized microscopy-spectroscopy. Credit: Elizabeth Herndon/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory are closer to unlocking the secrets to better soil carbon sequestration by studying the tiny, sand-like silicon deposits called phytoliths in plants.

The ORNL-developed AquaBOT measures a range of water quality indicators, providing data for studies focused on clean water and sustainable energy. Credit: Natalie Griffiths/ORNL, U.S. Dept. of Energy

Measuring water quality throughout river networks with precision, speed and at lower cost than traditional methods is now possible with AquaBOT, an aquatic drone developed by Oak Ridge National Laboratory.

Oak Ridge National Laboratory researchers developed a single burner cooking appliance powered by a blend of 50% hydrogen and natural gas, reducing emissions that contribute to the carbon footprint. Credit: ORNL, U.S. Dept. of Energy

A prototype cooking appliance developed by Oak Ridge National Laboratory uses a 50% blend of hydrogen and natural gas, offering an alternative to safely reduce emissions that contribute to the nation’s carbon footprint.

Oak Ridge National Laboratory researchers built a prototype natural gas furnace that uses acidic gas reduction technology to remove or trap potentially environmentally harmful emissions. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel solution to reduce the environmental impact of natural gas-condensing furnaces commonly used in U.S. homes.

ORNL researchers proved that COVID-19 vaccines can be kept ultra-cool for an extended period in a retrofitted commercial storage container, providing a resource for safe delivery to remote locations. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have retrofitted a commercial refrigeration container designed to ensure COVID-19 vaccines remain at ultra-low temperatures during long transport and while locally stored.

ORNL is making underused or inaccessible bioenergy data available to accelerate innovation for the bioeconomy. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

A research team from Oak Ridge National Laboratory has identified and improved the usability of data that can help accelerate innovation for the growing bioeconomy.

Planting native grasses such as the bioenergy crop switchgrass can restore habitat for birds like this Eastern kingbird. Credit: Chris Lituma/West Virginia University

An analysis by Oak Ridge National Laboratory shows that using less-profitable farmland to grow bioenergy crops such as switchgrass could fuel not only clean energy, but also gains in biodiversity.

The ectomycorrhizal fungus Laccaria bicolor, shown in green, envelops the roots of a transgenic switchgrass plant. Switchgrass is not known to interact with this type of fungi naturally; the added PtLecRLK1 gene tells the plant to engage the fungus. Credit: ORNL, U.S. Dept. of Energy

An ORNL team has successfully introduced a poplar gene into switchgrass, an important biofuel source, that allows switchgrass to interact with a beneficial fungus, ultimately boosting the grass’ growth and viability in changing environments.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

ORNL researchers developed an innovative insulation system that uses sensors and controls to exchange heat or coolness between a building and its thermal energy storage system, which maximizes energy savings. Credit: Andrew Sproles and Michelle Lehman/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a novel envelope system that diverts heat or coolness away from a building and stores it for future use.