Skip to main content
Fine roots from a larch tree peek out from a pile of peat excavated from an experimental warming plot in the SPRUCE experiment in Northern Minnesota. Credit: Colleen Iversen/ORNL, U.S. Dept. of Energy

New data hosted by Oak Ridge National Laboratory is helping scientists around the world understand the secret lives of plant roots as well as their impact on the global carbon cycle and climate change.

The 3D printed concrete smart wall installed at ORNL over the summer was monitored for energy efficiency, with preliminary results showing a minimum of 8% cost savings. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that cooling cost savings could be achieved with a 3D printed concrete smart wall following a three-month field test.

Researchers at Colorado State University and ORNL evaluated 14 urban megaregions to simulate the effects of climate change on water resources. Credit: CSU/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory worked with Colorado State University to simulate how a warming climate may affect U.S. urban hydrological systems.

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

Scientists at Oak Ridge National Laboratory added new plant data to a computer model that simulates Arctic ecosystems, enabling it to better predict how vegetation in rapidly warming northern environments may respond to climate change.

Scientists at Oak Ridge National Laboratory added new plant data to a computer model that simulates Arctic ecosystems, enabling it to better predict how vegetation in rapidly warming northern environments may respond to climate change.

ORNL researchers demonstrated a 3D printed power pole made of bioderived and recycled materials could be easily manufactured, transported and assembled, enabling the quick restoration of power after natural disasters. Credit: ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory demonstrated the ability to additively manufacture power poles from bioderived and recycled materials, which could more quickly restore electricity after natural disasters.

A team of scientists found that microbes at the SPRUCE experiment in the Minnesota peatlands are increasing production of methane under warming conditions. Credit: ORNL, U.S. Dept. of Energy

Scientists studying a unique whole-ecosystem warming experiment in the Minnesota peatlands found that microorganisms are increasing methane production faster than carbon dioxide production. 

ORNL researchers developed an innovative insulation system that uses sensors and controls to exchange heat or coolness between a building and its thermal energy storage system, which maximizes energy savings. Credit: Andrew Sproles and Michelle Lehman/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a novel envelope system that diverts heat or coolness away from a building and stores it for future use.

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

ORNL researchers used electron beam powder bed fusion to produce refractory metal molybdenum, which remained crack free and dense, proving its viability for additive manufacturing applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory scientists proved molybdenum titanium carbide, a refractory metal alloy that can withstand extreme temperature environments, can also be crack free and dense when produced with electron beam powder bed fusion.