Skip to main content
AIRES 4 attendees hailing from seven national laboratories and from academia met to discuss robust engineering for digital twins. Credit: Pradeep Ramuhalli/ORNL, U.S. Dept. of Energy

ORNL hosted its fourth Artificial Intelligence for Robust Engineering and Science, or AIRES, workshop from April 18-20. Over 100 attendees from government, academia and industry convened to identify research challenges and investment areas, carving the future of the discipline.

ORNL’s Travis Humble, Quantum Science Center director, addresses students during a working lunch. Credit: Teresa Hurt/ORNL, U.S. Dept. of Energy

Quantum computing sits on the cutting edge of scientific discovery. Given its novelty, the next generation of researchers will contribute significantly to the advancement of the field. However, this new crop of scientists must first be cultivated.

Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

After completing a bachelor’s degree in biology, Toya Beiswenger didn’t intend to go into forensics. But almost two decades later, the nuclear security scientist at ORNL has found a way to appreciate the art of nuclear forensics.

ORNL team members applied three independent strategies to decrease their project’s computational workload, which reduced their time to solution from months to a few weeks. First, in a technique called qubit tapering, they decreased the number of qubits required to express the problem, reducing the size of the problem itself. Second, they took fewer measurements to solve the problem by measuring groups of terms once rather than measuring each individual term from every group

Using the full capabilities of the Quantinuum H1-1 quantum computer, researchers from ORNL not only demonstrated best practices for scientific computing on current quantum systems but also produced an intriguing scientific result.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

Two researchers standing back to back in a grassy area

When geoinformatics engineering researchers at the Department of Energy’s Oak Ridge National Laboratory wanted to better understand changes in land areas and points of interest around the world, they turned to the locals — their data, at least.

Trillion Pixel Challenge attendees included interdisciplinary experts from image science, computer vision, high-performance computing, architecture, machine learning, advanced workflows, and end-user communities who came together to discuss geospatial AI challenges.

Experts across varied technology fields gathered ORNL to collaborate on the future of geospatial systems at the Trillion-Pixel GeoAI Challenge workshop. The third iteration of this event focused on multimodal advances in the field, including progress in artificial intelligence, cloud infrastructure, high-performance computing and remote sensing. These capabilities, when combined, can help solve problems in national and human security such as disaster response and land-use planning.

top view of cicada wing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to products with inherently antibacterial surfaces that are more effective than current chemical treatments.

This map illustrates the natural climate variability that affects the cold-season climate of the Central Southwest Asian region. Credit: Moetasim Ashfaq/ORNL

As extreme weather devastates communities worldwide, scientists are using modeling and simulation to understand how climate change impacts the frequency and intensity of these events. Although long-term climate projections and models are important, they are less helpful for short-term prediction of extreme weather that may rapidly displace thousands of people or require emergency aid.

This illustration shows how the TFIIH protein complex changes its structure to execute different functions. The TFIIH subunits are colored as follows: XPD red, p62 blue, p44 orange, p34 green, p52 purple, p8 light grey, XPB pink; MAT1 and XPA are shown in yellow, and DNA is cyan. Credit: Chunli Yan/Georgia State University

Transcription factor IIH is a veritable workhorse among the protein complexes that regulate human cell activity, playing critical roles both in synthesizing DNA and in enabling DNA repair. But how can one protein assembly participate in two such vastly different jobs? A team of researchers led by chemistry professor Ivaylo Ivanov of Georgia State University used the Summit supercomputer at ORNL to tackle that question.