Skip to main content
ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

Scientists synthesized graphene nanoribbons (yellow) on a titanium dioxide substrate (blue). The lighter ends show magnetic states. Inset: The ends have up and down spin, ideal for creating qubits. Credit: ORNL, U.S. Dept. of Energy

An international multi-institution team of scientists has synthesized graphene nanoribbons – ultrathin strips of carbon atoms – on a titanium dioxide surface using an atomically precise method that removes a barrier for custom-designed carbon

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.

Kübra Yeter-Aydeniz

Kübra Yeter-Aydeniz, a postdoctoral researcher, was recently named the Turkish Women in Science group’s “Scientist of the Week.”

ORNL researchers developed a quantum, or squeezed, light approach for atomic force microscopy that enables measurement of signals otherwise buried by noise. Credit: Raphael Pooser/ORNL, U.S. Dept. of Energy

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Quantum Science Center

The Department of Energy has selected Oak Ridge National Laboratory to lead a collaboration charged with developing quantum technologies that will usher in a new era of innovation.

The hybrid inverter developed by ORNL is an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and interact efficiently with the utility power grid. Credit: Carlos Jones, ORNL/U.S. Dept of Energy.

ORNL researchers have developed an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and smoothly interact with the utility power grid.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

Colorized micrograph of lily pollen

Oak Ridge National Laboratory researchers have built a novel microscope that provides a “chemical lens” for viewing biological systems including cell membranes and biofilms.

A nanobrush made by pulsed laser deposition of CeO2 and Y2O3 with dim and bright bands, respectively, is seen in cross-section with scanning transmission electron microscopy. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A team led by the Department of Energy’s Oak Ridge National Laboratory synthesized a tiny structure with high surface area and discovered how its unique architecture drives ions across interfaces to transport energy or information.