Skip to main content
Fullerenes appear as small silver spheres spread consistently throughout a network of small molecules, or polymers, in this schematic illustration of the morphology of a BHJ film with solvent additives. Credit: ORNL.
Advances in ultrathin films have made solar panels and semiconductor devices more efficient and less costly, and researchers at the Department of Energy’s Oak Ridge National Laboratory say they’ve found a way to manufacture the films more easily, too. Typically the films—used b...
An artist’s rendering of the five protein structures solved using neutrons shown on top of the MaNDi instrument detectors. Image credit - ORNL/DOE
Plants and other biomass can be converted into a variety of renewable high-value products including carbon fibers, plastics, and liquid fuels such as ethanol and biodiesel that are beneficial for reducing petroleum use and vehicle emissions. Breaking down plants in order to release...
A surfactant template guides the self-assembly of functional polymer structures in an aqueous solution. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; image by Youngkyu Han and Renee Manning.
The efficiency of solar cells depends on precise engineering of polymers that assemble into films 1,000 times thinner than a human hair. Today, formation of that polymer assembly requires solvents that can harm the environment, but scientists at the Department of En...
The Neutron Sciences Directorate’s two most recent distinguished fellows, Panchao Yin (left) and Bianca Haberl (below), are making major contributions to their respective fields. Image credit - Genevieve Martin
For early career researchers, a fellowship can be a valuable foot in the door, exposing them to the opportunity to gain experience in areas of science and technology of national importance.
Oak Ridge National Laboratory
Crude oil refinement can be an extremely costly chemical process. In an effort to reduce energy and cost demands, Oak Ridge National Laboratory researchers Anibal Ramirez-Cuesta and Stuart Campbell are collaborating with University of Nottingham (UK) researchers to develop metal-orga...
Doug Abernathy, left, ARCS instrument scientist at Oak Ridge National Laboratory, and Marc Janoschek, Los Alamos National Laboratory, prepare their sample for experiments at the Spallation Neutron Source.
Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium’s magnetism, which scientists have long theorized but have never been able to experimentally observe. The advances that enabled the discovery hold great pro...
Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms.

For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely.

ORNL Image
When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant polymer known as lignin, he noticed something unusual. The material’s microstructure -- a mixture of perfectly spherical nanoscale crystallites distributed within a fibrous matrix -- looked almost too good to be true.
ORNL Image
Researchers at the Department of Energy’s Oak Ridge National Laboratory got a surprise when they built a highly ordered lattice by layering thin films containing lanthanum, strontium, oxygen and iron. Although each layer had an intrinsically nonpolar (symmetric) distribution of electrical charges, the lattice had an asymmetric distribution of charges. The charge asymmetry creates an extra “switch” that brings new functionalities to materials when “flipped” by external stimuli such as electric fields or mechanical strain. This makes polar materials useful for devices such as sensors and actuators.
ORNL Image
The Department of Energy’s Oak Ridge National Laboratory concluded a series of workshops this month that engaged scientists from around the country to identify grand scientific challenges and how they might be addressed through application of neutron science.