Skip to main content
Researchers used experimental data to create a 23.7-million atom biomass model featuring cellulose (purple), lignin (brown), and enzymes (green). (Image credit: Mike Matheson, ORNL)
Ask a biofuel researcher to name the single greatest technical barrier to cost-effective ethanol, and you’re likely to receive a one-word response: lignin. Cellulosic ethanol—fuel derived from woody plants and waste biomass—has the potential to become an affordable, renew...
In pure water, lignin adopts a globular conformation (left) that aggregates on cellulose and blocks enzymes. In a THF-water cosolvent, lignin adopts coil conformations (right) that are easier to remove during pretreatment.
When the Ford Motor Company’s first automobile, the Model T, debuted in 1908, it ran on a corn-derived biofuel called ethanol, a substance Henry Ford dubbed “the fuel of the future.”
ORNL researchers are developing an idealized collector molecule that has a shape complementary to the surface atomic structure of xenotime, a rare earth yttrium-rich phosphate mineral.

Ensuring a reliable supply of rare earth elements, including four key lanthanides and yttrium, is a major goal of the Critical Materials Institute (https://cmi.ameslab.gov) as these elements are essential to many clean-energy technologies. These include energy-efficient lighting, ...

The microbe Clostridium thermocellum (stained green), seen growing on a piece of poplar biomass, is among several microorganisms recently evaluated in a BioEnergy Science Center comparative study. Image by Jennifer Morrell-Falvey, Oak Ridge National Labor
Researchers at the Department of Energy’s BioEnergy Science Center are looking beyond the usual suspects in the search for microbes that can efficiently break down inedible plant matter for conversion to biofuels. A new comparative study from the Oak Ridge National La...
This section of a serpentine channel reactor shows the parallel reactor and feeder channels separated by a nanoporous membrane. At left is a single nanopore viewed from the side; at right is a diagram of metabolite exchange across the membrane.
Lives of soldiers and others injured in remote locations could be saved with a cell-free protein synthesis system developed at the Department of Energy’s Oak Ridge National Laboratory. The device, a creation of a team led by Andrea Timm and Scott Retterer of the ...
In situ neutron diffraction visualizes the synthesis mechanism, involving multi-phase evolutions, of garnet-type fast lithium-ion solid conductors. The neutron diffraction determines the lithium vacancy distribution in the garnet lattice, and reveals the
Although they don’t currently have as much conductivity, solid-state electrolytes designed for lithium-ion batteries (LIBs) are emerging as a safer alternative to their more prevalent—sometimes flammable—liquid-electrolyte counterparts. However, a new study conducted at Oak Ridg...
Default image of ORNL entry sign
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors. The work of a team led by Carter Abney, a W...
Oak Ridge National Laboratory
Neutron measurements at Oak Ridge National Laboratory’s Spallation Neutron Source are giving physicists new insight into the behavior of quantum magnets. A research team led by Young-June Kim from the University of Toronto used neutron spectroscopy to observe a novel type of energ...
GremlinCARLA

Researchers at the Department of Energy’s Oak Ridge National Laboratory have received six R&D 100 Awards, increasing the lab’s total to 193 since the award’s inception in 1963. The competition, sponsored by R&D Magazine, recognizes advances in the nation’s ...

Using high-performance computing, ORNL researchers are modelling the atomic structure of new alloys to select the best candidates for physical experimentation.

The Department of Energy’s Oak Ridge National Laboratory, FCA US LLC, and the foundry giant, Nemak of Mexico, are combining their strengths to create lightweight powertrain materials that will help the auto industry speed past the technological