Skip to main content
ORNL and EPRI built an enclosed welding system in a hot cell of ORNL’s Radiochemical Engineering Development Center. C. Scott White (ORNL) performs operations with remotely controlled manipulators and cameras.

Scientists of the Department of Energy’s Light Water Reactor Sustainability Program (LWRS) and partners from the Electric Power Research Institute (EPRI) have conducted the first weld tests to repair highly irradiated materials at DOE’s Oak Ridge National Laboratory.

Fossil_energy_ORNL3.jpg
To improve models for drilling, hydraulic fracturing and underground storage of carbon dioxide, Oak Ridge National Laboratory scientists used neutrons to understand how water flows through fractured rock.
ORNL’s 2017 Molten Salt Reactor Workshop offered a wide range of talks on advanced reactors, including modeling and simulation techniques, commercial licensing strategies and the Department of Energy’s efforts to work with industry on developing designs.

The third annual Molten Salt Reactor Workshop allowed leading voices on advanced reactors—including scientists from the national laboratory system, the Nuclear Regulatory Commission, reactor design firms and universities—to discuss current efforts in molten salt reactor work and pu...

ORNL Image

For many scientists and engineers, the first real test of their mettle comes not in a classroom, but in a lab or the field, where hands-on experience can teach volumes. For Susan Hogle, that hands-on experience just happened to be with material that was too hot to handle—literally....

COHERENT collaborators were the first to observe coherent elastic neutrino–nucleus scattering. Their results, published in the journal Science, confirm a prediction of the Standard Model and establish constraints on alternative theoretical models. Image c

After more than a year of operation at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world’s smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.

A novel technique can help protect the innermost wall in a fusion reactor from the energy created when hydrogen isotopes are heated to temperatures hotter than the sun. Photo by General Atomics
Fusion scientists from Oak Ridge National Laboratory, as part of the DIII-D National Fusion Facility team at General Atomics, are studying an approach to insulate the reactor’s innermost wall that surrounds the burning plasma from the energy created when hydrogen isotopes are heated...
ORNL Image

While serving in Kandahar, Afghanistan, U.S. Navy construction mechanic Matthew Sallas may not have imagined where his experience would take him next. But researchers at Oak Ridge National Laboratory certainly had the future in mind as they were creating programs to train men and wome...

Quick coatings

Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries—a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.

Jason Newby is a physicist in the Nuclear Security and Isotope Technology Division at ORNL.
Not everyone can look back on their life and pick the specific instance that brought them to their current field and dictated the course of their career. For Jason Newby, that instance was a high school physics class that would eventually lead to him studying nuclear technology and i...
Using 3-D printing, ORNL researchers rapidly prototyped a complex gearbox pattern and created sand molds to make no-waste aluminum parts for industry partner, Emrgy Hydro.

Oak Ridge National Laboratory has successfully developed and tested a novel sand casting technique to quickly design complex patterns to fabricate components for industry partner Emrgy Hydro, makers of hydropower devices designed to generate electricity from slow or shallow water flo...