Skip to main content
ORNL researchers developed a quantum, or squeezed, light approach for atomic force microscopy that enables measurement of signals otherwise buried by noise. Credit: Raphael Pooser/ORNL, U.S. Dept. of Energy

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

3D-printed 316L steel has been irradiated along with traditionally wrought steel samples. Researchers are comparing how they perform at various temperatures and varying doses of radiation. Credit: Jaimee Janiga/ORNL

It’s a new type of nuclear reactor core. And the materials that will make it up are novel — products of Oak Ridge National Laboratory’s advanced materials and manufacturing technologies.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

Colorized micrograph of lily pollen

Oak Ridge National Laboratory researchers have built a novel microscope that provides a “chemical lens” for viewing biological systems including cell membranes and biofilms.

Yanwen Zhang

In the search to create materials that can withstand extreme radiation, Yanwen Zhang, a researcher at the Department of Energy’s Oak Ridge National Laboratory, says that materials scientists must think outside the box.

At the U.S. Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

Transformational Challenge Reactor Demonstration items

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

Prospecting for deformations in exotic isotopes of ruthenium and molybdenum, Allmond found they displayed a deflated-football morphology. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the Physics Division of the Department of Energy’s Oak Ridge National Laboratory, James (“Mitch”) Allmond conducts experiments and uses theoretical models to advance our understanding of the structure of atomic nuclei, which are made of various combinations of protons and neutrons (nucleons).

Kat Royston

As a teenager, Kat Royston had a lot of questions. Then an advanced-placement class in physics convinced her all the answers were out there.