Skip to main content
Even small movements of hydrogen, shown in yellow, were found to cause large energy shifts in the attached iron atoms, shown in silver, which could be of interest in creating novel chemical reactions. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from Yale University and ORNL collaborated on neutron scattering experiments to study hydrogen atom locations and their effects on iron in a compound similar to those commonly used in industrial catalysts.

Steve Nagler

The truth is neutron scattering is not important, according to Steve Nagler. The knowledge gained from using it is what’s important

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab. Credit: ORNL, U.S. Dept. of Energy

Seven scientists at the Department of Energy’s Oak Ridge National Laboratory have been named Battelle Distinguished Inventors, in recognition of their obtaining 14 or more patents during their careers at the lab.

Researchers found that moderate levels of ash — sometimes found as spheres in biomass — do not significantly affect the mechanical properties of biocomposites made up of corn stover, switchgrass and PLA thermoplastic. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The presence of minerals called ash in plants makes little difference to the fitness of new naturally derived compound materials designed for additive manufacturing, an Oak Ridge National Laboratory-led team found.

A pure lipid membrane formed using lipid-coated water droplets exhibits long-term potentiation, or LTP, associated with learning and memory, emulating hippocampal LTP observed in the brains of mammals and birds. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at ORNL achieved a first-of-its-kind result that could have big implications for both edge computing and human health.

Field emission scanning electron microscopy reveals the microstructure of the porous activated carbon that can confine hydrogen at the nanoscale. Credit: Joaquin Silvestre-Albero

Neutron scattering techniques were used as part of a study of a novel nanoreactor material that grows crystalline hydrogen clathrates, or HCs, capable of storing hydrogen.

Magnetic quantum material broadens platform for probing next-gen information technologies

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.

Oak Ridge National Laboratory’s Leah Broussard shows a neutron-absorbing "wall" that stops all neutrons but in theory would allow hypothetical mirror neutrons to pass through. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.

Jim Szybist, Propulsion Science section head at ORNL, is applying his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

What’s getting Jim Szybist fired up these days? It’s the opportunity to apply his years of alternative fuel combustion and thermodynamics research to the challenge of cleaning up the hard-to-decarbonize, heavy-duty mobility sector — from airplanes to locomotives to ships and massive farm combines.