Skip to main content
The theories that led to physicists Thouless, Haldane, and Kosterlitz being awarded the Nobel Prize in physics, are guiding today’s quantum physicists at ORNL in their search for materials of the future. (Image credit: ORNL/Jill Hemman)

The theories recognized with this year’s Nobel Prize in Physics underpin research ongoing at the Department of Energy’s Oak Ridge National Laboratory, where scientists are using neutrons as a probe to seek new materials with extraordinary properties for applications such as next-generation electronics, superconductors, and quantum computing.

The SNS LINAC is the most powerful proton-pulsed accelerator in the world.
The first of its kind superconducting linear particle accelerator (LINAC) built for the Spallation Neutron Source (SNS) at the Department of Energy’s Oak Ridge National Laboratory is now celebrating 10 years of successful operations. The world-leading machine, which took 7 years...
Shull and Wollan
The Spallation Neutron Source marks a decade as a leading neutron science facility today at the Department of Energy's Oak Ridge National Laboratory. “The Spallation Neutron Source has opened neutron scattering science to a new generation of researchers at a ti...
Neutrons facilities welcome 20,000th user
In August, the High Flux Isotope Reactor and the Spallation Neutron Source—both U.S. Department of Energy Office of Science User Facilities at DOE’s Oak Ridge National Laboratory—reached a milestone with the arrival of Irina Nesmelova, the facilities’ 20,000th user. “We ...
Theoretical condensed matter physicist Cristian Batista brings advanced knowledge of theory to expand upon the experimental physics research conducted at ORNL. (Image credit: Genevieve Martin)
Theory and experiment push each other to expand the frontiers of physics. Now, the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory has both. Cristian Batista, a theoretical condensed matter physicist with a joint appointment at ORNL and th...
Illustration shows the one dimensional Yb ion chain in the quantum magnet Yb2Pt2Pb. The Yb orbitals are depicted as the iso-surfaces, and the green arrows indicate the antiferromagnetically aligned Yb magnetic moments.
A new study by a multi-institutional team, led by researchers from Brookhaven National Laboratory and Stony Brook University, has revealed exotic magnetic properties in a rare-earth based intermetallic compound. Similar studies suggest a better understanding of those types of behavio...
Berkelium-249, contained in the greenish fluid in the tip of the vial, was crucial to the experiment that discovered element 117. It was made in the research reactor at DOE's Oak Ridge National Laboratory.

The International Union of Pure and Applied Chemistry (IUPAC) Inorganic Chemistry Division has published a Provisional Recommendation for the names and symbols of the recently discovered superheavy elements 113, 115, 117, and 118.

A 3D structure of the HIV-1 protease in cartoon representation with bound clinical drug darunavir (shown as sticks).
A team led by the Department of Energy’s Oak Ridge National Laboratory used neutron analysis to better understand a protein implicated in the replication of HIV, the retrovirus that causes AIDS. The enzyme, known as HIV-1 protease, is a key drug target for HIV and AIDS therapies. &nbs...
Illustration showing structure of Bi2Se3-EuS bilayer film. (Image credit: ORNL/Jill Hemman)
A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology. Researchers at the Department of Energy’s Oak Ridge Natio...
This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons.

Researchers at the Department of Energy’s Oak Ridge National Laboratory used neutrons to uncover novel behavior in materials that holds promise for quantum computing. The findings, published in Nature Materials, provide evidence for long-sought phenomena in a two-dim...