Skip to main content
Chunliu Zhuo is a postdoctoral researcher at the University of North Texas BioDiscovery Institute. Credit: University of North Texas

A team of researchers working within the Center for Bioenergy Innovation at ORNL has discovered a pathway to encourage a type of lignin formation in plants that could make the processing of crops grown for products such as sustainable jet fuels easier and less costly.

An artist's rendering of the Ultium Cells battery cell production facility to be built in Spring Hill, Tennessee, which will employ 1,300 people. Recognizing the unique expertise of their organizations, ORNL, TVA, and the Tennessee Department of Economic and Community Development have been working together for several years to bring startups developing battery technologies for EVs and established automotive firms to Tennessee. Credit: Ultium Cells

ORNL, TVA and TNECD were recognized by the Federal Laboratory Consortium for their impactful partnership that resulted in a record $2.3 billion investment by Ultium Cells, a General Motors and LG Energy Solution joint venture, to build a battery cell manufacturing plant in Spring Hill, Tennessee.

ORNL’s Marie Kurz examines the many factors affecting the health of streams and watersheds. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Spanning no less than three disciplines, Marie Kurz’s title — hydrogeochemist — already gives you a sense of the collaborative, interdisciplinary nature of her research at ORNL.

ORNL’s Larry York studies how plant root traits contribute to crop productivity. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Biologist Larry York’s fascination with plant roots has spurred his research across four continents and inspired him to create accessible tools that enable others to explore the underground world.

Planting native grasses such as the bioenergy crop switchgrass can restore habitat for birds like this Eastern kingbird. Credit: Chris Lituma/West Virginia University

An analysis by Oak Ridge National Laboratory shows that using less-profitable farmland to grow bioenergy crops such as switchgrass could fuel not only clean energy, but also gains in biodiversity.

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

Carrie Eckert

Carrie Eckert applies her skills as a synthetic biologist at ORNL to turn microorganisms into tiny factories that produce a variety of valuable fuels, chemicals and materials for the growing bioeconomy.

The ectomycorrhizal fungus Laccaria bicolor, shown in green, envelops the roots of a transgenic switchgrass plant. Switchgrass is not known to interact with this type of fungi naturally; the added PtLecRLK1 gene tells the plant to engage the fungus. Credit: ORNL, U.S. Dept. of Energy

An ORNL team has successfully introduced a poplar gene into switchgrass, an important biofuel source, that allows switchgrass to interact with a beneficial fungus, ultimately boosting the grass’ growth and viability in changing environments.

Environmental scientist John Field uses ecosystem models to analyze sustainable methods for growing crops such as switchgrass. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

For ORNL environmental scientist and lover of the outdoors John Field, work in ecosystem modeling is a profession with tangible impacts.

Researchers gained new insights into the mechanisms some methane-feeding bacteria called methanotrophs (pictured) use to break down the toxin methylmercury. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy; Jeremy Semrau/Univ. of Michigan

A team led by ORNL and the University of Michigan have discovered that certain bacteria can steal an essential compound from other microbes to break down methane and toxic methylmercury in the environment.