Skip to main content
Smart Neighborhood homes

To better determine the potential energy cost savings among connected homes, researchers at Oak Ridge National Laboratory developed a computer simulation to more accurately compare energy use on similar weather days.

Image caption: An ORNL research team lead is developing a universal benchmark for the accuracy and performance of quantum computers based on quantum chemistry simulations. The benchmark will help the community evaluate and develop new quantum processors. (Below left: schematic of one of quantum circuits used to test the RbH molecule. Top left: molecular orbitals used. Top right: actual results obtained using the bottom left circuit for RbH).

Researchers at ORNL have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.

Friederike Bock, a Eugene P. Wigner Fellow

Friederike Bock, a Eugene P. Wigner Fellow, wants everyone to know scientists aren’t just robots—they want to help others understand their research, and they have wide-ranging interests.

Lightning strike test

Researchers at Oak Ridge National Laboratory demonstrated that an additively manufactured polymer layer, when applied to carbon fiber reinforced plastic, or CFRP, can serve as an effective protector against aircraft lightning strikes.

Julie G. Ezold and Yutai Katoh

The American Nuclear Society (ANS) has recognized two nuclear researchers, Julie G. Ezold and Yutai Katoh, both of the Department of Energy’s Oak Ridge National Laboratory, at its annual Winter Meeting and Nuclear Technology Expo, held in Washington, D.C.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Van-der-Waals layered CuInP2S6 has different properties depending on the locations of copper atoms (orange spheres). Unified theory and experiment led to the discovery of two co-existing phases which are connected through a quadruple energy well whose properties can be harnessed to provide materials with new functions. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; illustration by Sabine Neumayer

A scientific team from the Department of Energy’s Oak Ridge National Laboratory and Vanderbilt University has made the first experimental observation of a material phase that had been predicted but never seen.

Nanofabricated “golden lollipop” helps researchers observe Fano interference using electron microscopy techniques at Oak Ridge National Laboratory.

Electrons in atoms are pretty talented. They can form chemical bonds, get kicked out of the atom and even “jump” to different locations based on their energetic states.

St John's CyberForce team

Oak Ridge National Laboratory will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy’s fifth collegiate CyberForce Competition on Nov. 16. The event brings together student teams from across the country to compete at 10 of DOE’s national laboratories.

Researchers at the Center for Nanophase Materials Sciences demonstrated an insect-inspired, mechanical gyroscope to advance motion sensing capabilities in consumer-sized applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S Dept. of Energy

Researchers at ORNL and the National Renewable Energy Laboratory took inspiration from flying insects to demonstrate a miniaturized gyroscope, a special sensor used in navigation technologies.