Skip to main content
Hood Whitson, chief executive officer of Element3, and Cynthia Jenks, associate laboratory director for the Physical Sciences Directorate, shake hands during the Element3 licensing event at ORNL on May 3, 2024. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A collection of seven technologies for lithium recovery developed by scientists from ORNL has been licensed to Element3, a Texas-based company focused on extracting lithium from wastewater produced by oil and gas production. 

Ramesh Bhave in lab

Caldera Holding, the owner and developer of Missouri’s Pea Ridge iron mine, has entered a nonexclusive research and development licensing agreement with ORNL to apply a membrane solvent extraction technique, or MSX, developed by ORNL researchers to mined ores.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

The ORNL DAAC gathers, processes, archives and distributes information on key land processes, including the shifting ecological and geomorphological features of the U.S. Atchafalaya and Terrebonne basins gathered by the NASA Delta-X mission shown here. Credit: NASA Delta-X

In 1993 as data managers at ORNL began compiling observations from field experiments for the National Aeronautics and Space Administration, the information fit on compact discs and was mailed to users along with printed manuals.

 A group of ORNL staff standing in a long corridor with flags hanging from the ceiling

For 25 years, scientists at Oak Ridge National Laboratory have used their broad expertise in human health risk assessment, ecology, radiation protection, toxicology and information management to develop widely used tools and data for the U.S. Environmental Protection Agency as part of the agency’s Superfund program.

ORNL’s Fernanda Santos examines a soil sample at an NGEE Arctic field site in the Alaskan tundra in June 2022. Credit: Amy Breen, University of Alaska Fairbanks.

Wildfires are an ancient force shaping the environment, but they have grown in frequency, range and intensity in response to a changing climate. At ORNL, scientists are working on several fronts to better understand and predict these events and what they mean for the carbon cycle and biodiversity.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

Researchers at Oak Ridge National Laboratory discovered a tug-of-war strategy to enhance chemical separations needed to recover critical materials. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

ORNL scientists combined two ligands, or metal-binding molecules, to target light and heavy lanthanides simultaneously for exceptionally efficient separation.

Researchers observe T-shaped cluster drives lanthanide separation system during liquid-liquid extraction. Credit: Alex Ivanov/ORNL, U.S. Dept. of Energy

Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.