Skip to main content
Wide shot of the expo center, ground filled with people walking and a green, white and blue 3D circle sign above everyone in the center

The Department of Energy’s Oak Ridge National Laboratory had a major presence at this year’s International Conference for High Performance Computing, Networking, Storage, and Analysis (SC24). 

Four scientists are standing in a field next to a data-gathering tool robot

Scientists at the Department of Energy’s Oak Ridge National Laboratory recently demonstrated an autonomous robotic field monitoring, sampling and data-gathering system that could accelerate understanding of interactions among plants, soil and the environment.

5 scientists in blue and white coats are leaning over the wind blades covered in orange and yellow material

ORNL researchers reached a significant milestone by building an entire 6.5-foot turbine blade tip using novel materials. The team then tested it against the forces of simulated lightning in a specialized lab at Mississippi State University, where the blade tip emerged pristine after tests that isolate the effects of high voltage. 

A graphical representation about a gene in a poplar tree. There is a close up of a tree to the right and the far left-top corner. There is a strand of DNA going down the middle of the image with an ant and two small circles showing the organisms inside the DNA

A team of scientists with two Department of Energy Bioenergy Research Centers — the Center for Bioenergy Innovation at Oak Ridge National Laboratory and the Center for Advanced Bioenergy and Bioproducts Innovation at the University of Illinois Urbana-Champaign — identified a gene in a poplar tree that enhances photosynthesis and can boost tree height by about 30% in the field and by as much as 200% in the greenhouse. 

ORNL researcher is sitting on a desk with his hands crossed, three screens behind him depicting work in satellites and space. Pictures on the left and right are orange in color while the middle photo is blue and reflects an image from space

From during his early years at NASA to his current role a researcher and group leader, Peter Fuhr has pushed the boundaries of optical and sensor technology. Fuhr’s path is marked by wacky creativity that can’t confine itself to challenges in a single field. No idea is too far out to try out — and so many of them work that Fuhr has a host of inventions and start-ups under his belt.

Pictured is the process of converting greenhouse gases to syngas, shown with a city scape with CO2 and CH4 turning to a mountain landscape with CO and H2

A chemical reaction can convert two polluting greenhouse gases into valuable building blocks for cleaner fuels and feedstocks, but the high temperature required for the reaction also deactivates the catalyst. A team led by ORNL has found a way to thwart deactivation. The strategy may apply broadly to other catalysts.

A speaker is standing at the podium in front of a PowerPoint slide with the title of the workshop on it, with 10 people in the audience

More than 200 stakeholders attended a recent workshop at DOE’s Manufacturing Demonstration Facility to discuss the future of powder metallurgy-hot isostatic pressing as a manufacturing technique. 

Three team members stand holding their award for bet paper by Welding Journal

A paper written by researchers from the Department of Energy’s Oak Ridge National Laboratory was selected as the top paper of 2023 by Welding Journal that explored the feasibility of using laser-blown powder direct energy deposition, or Laser-powder DED.

seven scientists' headshots are listed horizontally in a graphic representing the Battelle Distingished Inventors

Seven scientists affiliated with ORNL have been named Battelle Distinguished Inventors in recognition of being granted 14 or more United States patents. Since Battelle began managing ORNL in 2000, 104 ORNL researchers have reached this milestone.

microscopic ctherm biomass

Using a best-of-nature approach developed by researchers working with the Center for Bioenergy Innovation at the Department of Energy’s Oak Ridge National Laboratory and Dartmouth University, startup company Terragia Biofuel is targeting commercial biofuels production that relies on renewable plant waste and consumes less energy. The technology can help meet the demand for billions of gallons of clean liquid fuels needed to reduce emissions from airplanes, ships and long-haul trucks.