Skip to main content
exp_in_10_dry_tube.jpg

Scientists from Oak Ridge National Laboratory performed a corrosion test in a neutron radiation field to support the continued development of molten salt reactors.

OAK RIDGE, Tenn., Nov. 27, 2018—The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has broken a new record by ending its first neutron production cycle in fiscal year 2019 at its design power level of 1.4 megawatts.

The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has broken a new record by ending its first neutron production cycle in fiscal year 2019 at its design power level of 1.4 megawatts.

Two neutron diffraction experiments (represented by pink and blue neutron beams) probed a salty solution to reveal its atomic structure. The only difference between the experiments was the identity of the oxygen isotope (O*) that labeled nitrate molecules

Scientists at the Department of Energy’s Oak Ridge National Laboratory used neutrons, isotopes and simulations to “see” the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come

ORNL is again hosting a workshop focused on the next generation of molten salt reactors.

Experts focused on the future of nuclear technology will gather at Oak Ridge National Laboratory for the fourth annual Molten Salt Reactor Workshop on October 3–4.

ORNL cybersecurity researchers Jared Smith (left) and Elliot Greenlee (right) participate in a demonstration day event to showcase how Akatosh, a new security analysis tool, quickly sorts through data to identify potential threats.

As technology continues to evolve, cybersecurity threats do as well. To better safeguard digital information, a team of researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has developed Akatosh, a security analysis tool that works in conjunctio...

QRNG_photo_ORNL.png

Qrypt, Inc., has exclusively licensed a novel cyber security technology from the Department of Energy’s Oak Ridge National Laboratory, promising a stronger defense against cyberattacks including those posed by quantum computing.

Lauren Garrison

The materials inside a fusion reactor must withstand one of the most extreme environments in science, with temperatures in the thousands of degrees Celsius and a constant bombardment of neutron radiation and deuterium and tritium, isotopes of hydrogen, from the volatile plasma at th...

Ryan Kerekes is leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory. Photos by Genevieve Martin, ORNL.

As leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory, Kerekes heads an accelerated lab-directed research program to build virtual models of critical infrastructure systems like the power grid that can be used to develop ways to detect and repel cyber-intrusion and to make the network resilient when disruption occurs.

ORNL’s new salt purification lab offers tools to make and purify the salt and perform corrosion testing, which are essential steps in qualifying molten salt reactor technologies for commercial use. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory has developed a salt purification lab to study the viability of using liquid salt that contains lithium fluoride and beryllium fluoride, known as FLiBe, to cool molten salt reactors, or MSRs. Multiple American companies developing advanced reactor technol...

Oak Ridge National Laboratory used neutrons to evaluate the behavior of ions adsorbed on the external surfaces onion-like carbon electrodes and determine the right balance of two liquid salts that yields optimal energy storage potential.

Energy storage could get a boost from new research of tailored liquid salt mixtures, the components of supercapacitors responsible for holding and releasing electrical energy. Oak Ridge National Laboratory’s Naresh Osti and his colleagues used neutrons at the lab’s Spallation Neutron ...