Skip to main content
ORNL-led collaboration solves a beta-decay puzzle with advanced nuclear models

OAK RIDGE, Tenn., March 11, 2019—An international collaboration including scientists at the Department of Energy’s Oak Ridge National Laboratory solved a 50-year-old puzzle that explains why beta decays of atomic nuclei 

Neutron scattering allowed direct observation of how aurein induces lateral segregation in the bacteria membranes, which creates instability in the membrane structure. This instability causes the membranes to fail, making harmful bacteria less effective.

As the rise of antibiotic-resistant bacteria known as superbugs threatens public health, Oak Ridge National Laboratory’s Shuo Qian and Veerendra Sharma from the Bhaba Atomic Research Centre in India are using neutron scattering to study how an antibacterial peptide interacts with and fights harmful bacteria.

(From left) ORNL Associate Laboratory Director for Computing and Computational Sciences Jeff Nichols; ORNL Health Data Sciences Institute Director Gina Tourassi; DOE Deputy Under Secretary for Science Thomas Cubbage; ORNL Task Lead for Biostatistics Blair Christian; and ORNL Research Scientist Ioana Danciu were invited to the White House to showcase an ORNL-developed digital tool aimed at better matching cancer patients with clinical trials.

OAK RIDGE, Tenn., March 4, 2019—A team of researchers from the Department of Energy’s Oak Ridge National Laboratory Health Data Sciences Institute have harnessed the power of artificial intelligence to better match cancer patients with clinical trials.

ORNL astrophysicist Raph Hix models the inner workings of supernovae on the world’s most powerful supercomputers.

More than 1800 years ago, Chinese astronomers puzzled over the sudden appearance of a bright “guest star” in the sky, unaware that they were witnessing the cosmic forge of a supernova, an event repeated countless times scattered across the universe.

At the salt–metal interface, thermodynamic forces drive chromium from the bulk of a nickel alloy, leaving a porous, weakened layer. Impurities in the salt drive further corrosion of the structural material. Credit: Stephen Raiman/Oak Ridge National Labora

Oak Ridge National Laboratory scientists analyzed more than 50 years of data showing puzzlingly inconsistent trends about corrosion of structural alloys in molten salts and found one factor mattered most—salt purity.

Coexpression_hi-res_image[1].jpg

While studying the genes in poplar trees that control callus formation, scientists at Oak Ridge National Laboratory have uncovered genetic networks at the root of tumor formation in several human cancers.

mirrorAsymmetry-NPDGamma_ORNL.jpg

A team of scientists has for the first time measured the elusive weak interaction between protons and neutrons in the nucleus of an atom. They had chosen the simplest nucleus consisting of one neutron and one proton for the study.

2018-P07635 BL-6 user - Univ of Guelph-6004R_sm[2].jpg

A team of scientists, led by University of Guelph professor John Dutcher, are using neutrons at ORNL’s Spallation Neutron Source to unlock the secrets of natural nanoparticles that could be used to improve medicines.

exp_in_10_dry_tube.jpg

Scientists from Oak Ridge National Laboratory performed a corrosion test in a neutron radiation field to support the continued development of molten salt reactors.

Leah Broussard leads a study of neutron decay to understand correlations between electrons and antineutrinos as well as subtle distortions in the electron energy spectrum.

Leah Broussard, a physicist at the Department of Energy’s Oak Ridge National Laboratory, has so much fun exploring the neutron that she alternates between calling it her “laboratory” and “playground” for understanding the universe. “The neutron is special,” she said of the sub...