Skip to main content
 A group of ORNL staff standing in a long corridor with flags hanging from the ceiling

For 25 years, scientists at Oak Ridge National Laboratory have used their broad expertise in human health risk assessment, ecology, radiation protection, toxicology and information management to develop widely used tools and data for the U.S. Environmental Protection Agency as part of the agency’s Superfund program.

Attendees of SMC23 pose for their annual group photo in downtown Knoxville, TN.

ORNL hosted its annual Smoky Mountains Computational Sciences and Engineering Conference in person for the first time since the COVID-19 pandemic.

Director of ORNL’s AI Initiative Prasanna Balaprakash addresses attendees at the Generative AI for ORNL Science Workshop. Credit: ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory hosted its Smoky Mountains Computational Science and Engineering Conference for the first time in person since the COVID pandemic broke in 2020. The conference, which celebrated its 20th consecutive year, took place at the Crowne Plaza Hotel in downtown Knoxville, Tenn., in late August.

Conceptual art depicts an atomic nucleus and merging neutron stars, respectively, areas of study in ORNL-led projects called NUCLEI and ENAF within the Scientific Discovery through Advanced Computing, or SciDAC, program. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

ORNL is leading two nuclear physics research projects within the Scientific Discovery through Advanced Computing, or SciDAC, program from the Department of Energy Office of Science.

ORNL researchers are demonstrating an automation system for this portable system, currently based in Colorado, for treatment of non-traditional water sources to drinking water standards. Credit: Tzahi Cath/Colorado School of Mines

Researchers at ORNL are developing advanced automation techniques for desalination and water treatment plants, enabling them to save energy while providing affordable drinking water to small, parched communities without high-quality water supplies.

The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

oxygen isotope 28

Rare isotope oxygen-28 has been determined to be "barely unbound" by experiments led by researchers at the Tokyo Institute of Technology and by computer simulations conducted at ORNL. The findings from this first-ever observation of 28O answer a longstanding question in nuclear physics: can you get bound isotopes in a very neutron-rich region of the nuclear chart, where instability and radioactivity are the norm? 

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

The OpeN-AM experimental platform, installed at the VULCAN instrument, features a robotic arm that prints layers of molten metal to create complex shapes. Credit: Jill Hemman/ORNL, U.S Dept. of Energy

Technologies developed by researchers at ORNL have received six 2023 R&D 100 Awards.  

A beam of excited sodium-32 nuclei implants in the FRIB Decay Station initiator is used to detect decay signatures of isotopes. Credit: Gary Hollenhead, Toby King and Adam Malin/ORNL, U.S. Dept. of Energy

Timothy Gray of ORNL led a study that may have revealed an unexpected change in the shape of an atomic nucleus. The surprise finding could affect our understanding of what holds nuclei together, how protons and neutrons interact and how elements form.