Skip to main content
Mirko Musa was always fascinated by the power of rivers, specifically how these mighty waterways sculpt landscapes. Now, as a water power researcher, he’s finding ways to harness that power and protect rivers at the same time. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Mirko Musa spent his childhood zigzagging his bike along the Po River. The Po, Italy’s longest river, cuts through a lush valley of grain and vegetable fields, which look like a green and gold ocean spreading out from the river’s banks. 

The DuAlumin-3D research team developed a lightweight, aluminum alloy for additive manufacturing. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Dean Pierce of ORNL and a research team led by ORNL’s Alex Plotkowski were honored by DOE’s Vehicle Technologies Office for development of novel high-performance alloys that can withstand extreme environments.

ORNL’s Fernanda Santos examines a soil sample at an NGEE Arctic field site in the Alaskan tundra in June 2022. Credit: Amy Breen, University of Alaska Fairbanks.

Wildfires are an ancient force shaping the environment, but they have grown in frequency, range and intensity in response to a changing climate. At ORNL, scientists are working on several fronts to better understand and predict these events and what they mean for the carbon cycle and biodiversity.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

ORNL researchers used geotagged photos to map crude oil train routes in the U.S. The mapping gives transportation planners insight into understanding potential impacts along the routes. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers used images from a photo-sharing website to identify crude oil train routes across the nation to provide data that could help transportation planners better understand regional impacts.

top view of cicada wing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to products with inherently antibacterial surfaces that are more effective than current chemical treatments.

Adult four-toed salamander

Oak Ridge National Laboratory researchers developed a model framework that identifies ways to ensure wildlife can safely navigate their habitats while not unduly affecting infrastructure.

Saubhagya Rathore uses his modeling, hydrology and engineering expertise to improve understanding of the nation’s watersheds to better predict the future climate and to guide resilience strategies. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up exploring the parklands of India where Rudyard Kipling drew inspiration for The Jungle Book left Saubhagya Rathore with a deep respect and curiosity about the natural world. He later turned that interest into a career in environmental science and engineering, and today he is working at ORNL to improve our understanding of watersheds for better climate prediction and resilience.

3D supernova simulations

As a result of largescale 3D supernova simulations conducted on the Oak Ridge Leadership Computing Facility’s Summit supercomputer by researchers from the University of Tennessee and Oak Ridge National Laboratory, astrophysicists now have the most complete picture yet of what gravitational waves from exploding stars look like. 

ORNL researchers have enabled standard raised pavement markers to transmit GPS information that helps autonomous driving features function better in remote areas or in bad weather. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Working with Western Michigan University and other partners, ORNL engineers are placing low-powered sensors in the reflective raised pavement markers that are already used to help drivers identify lanes. Microchips inside the markers transmit information to passing cars about the road shape to help autonomous driving features function even when vehicle cameras or remote laser sensing, called LiDAR, are unreliable because of fog, snow, glare or other obstructions.