Skip to main content
Angelique Adams, front left, introduces Kusum Rathore, front center, executive director and vice president of the multi-campus office at the University of Tennessee Research Foundation, and Jim Biggs, executive director of the Knoxville Entrepreneur Center, during the final presentation event for ORNL’s Safari coaching program.

Five researchers at the Department of Energy’s Oak Ridge National Laboratory recently completed an eight-week pilot commercialization coaching program as part of Safari, a program funded by DOE’s Office of Technology Transitions, or OTT, Practices to Accelerate the Commercialization of Technologies, or PACT. 

The image depicts a molecule made up of 6 white balls, two smaller red balls and two larger grey balls. This molecule is against a pink, blue and purple background.

A research team led by the Department of Energy’s Oak Ridge National Laboratory demonstrated an effective and reliable new way to identify and quantify polyethylene glycols in various samples. 

Image with a grey and black backdrop - in front is a diamond with two circles coming out from it, showing the insides.

The world’s fastest supercomputer helped researchers simulate synthesizing a material harder and tougher than a diamond — or any other substance on Earth. The study used Frontier to predict the likeliest strategy to synthesize such a material, thought to exist so far only within the interiors of giant exoplanets, or planets beyond our solar system.

Ariel view of the Salt Waste Processing Facility, which is big, white and square.

A team of federal contractor and national laboratory engineers and scientists from the U.S. Department of Energy Office of Environmental Management has been nationally distinguished as “Heroes of Chemistry” for making the world better through their effort, ingenuity, creativity and perseverance.

Oak Ridge National Laboratory building and sign for the Computing and Computational Sciences Directorate.

The contract will be awarded to develop the newest high-performance computing system at the Oak Ridge Leadership Computing Facility.

This photo is of four men standing in front of a wall of monitors that are showing a tree looking image.

To better predict long-term flooding risk, scientists at the Department of Energy’s Oak Ridge National Laboratory developed a 3D modeling framework that captures the complex dynamics of water as it flows across the landscape. The framework seeks to provide valuable insights into which communities are most vulnerable as the climate changes, and was developed for a project that’s assessing climate risk and mitigation pathways for an urban area along the Southeast Texas coast.

Arial view of the Atchafalaya Basin

In the wet, muddy places where America’s rivers and lands meet the sea, scientists from the Department of Energy’s Oak Ridge National Laboratory are unearthing clues to better understand how these vital landscapes are evolving under climate change.

Digital image of molecules would look like. There are 10 clusters of these shapes in grey, red and blue with a teal blue background

Oak Ridge National Laboratory scientists have developed a method leveraging artificial intelligence to accelerate the identification of environmentally friendly solvents for industrial carbon capture, biomass processing, rechargeable batteries and other applications.

Honors & Awards in white with a green background with an oak leaf underneath

ORNL's Guang Yang and Andrew Westover have been selected to join the first cohort of DOE’s Advanced Research Projects Agency-Energy Inspiring Generations of New Innovators to Impact Technologies in Energy 2024 program. The program supports early career scientists and engineers in their work to convert disruptive ideas into impactful energy technologies. 

Red tube holds a cluster of green and purple dots (hundreds of dots) while a long white line runs across the image, giving the appearance of waves.

An Oak Ridge National Laboratory team revealed how chemical species form in a highly reactive molten salt mixture of aluminum chloride and potassium chloride by unraveling vibrational signatures and observing ion exchanges.