Skip to main content
Oak Ridge National Laboratory researchers developed a device called a piezoelectric-driven magnetic actuator, or PEDMA, that can be inserted into the header of a microchannel heat exchanger to keep refrigerants flowing evenly and the HVAC unit running efficiently. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that microchannel heat exchangers in heating, ventilation and air conditioning units can keep refrigerants evenly and continually distributed by inserting a device called a piezoelectric-driven

Caption: ORNL researchers demonstrated a system that can detect propane leaks within seconds and notify emergency services immediately, well before flames ignite. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that an electrochemical sensor paired with a transmitter not only detects propane leaks within seconds, but it can also send a signal to alert emergency services.

Oak Ridge National Laboratory’s Leah Broussard shows a neutron-absorbing "wall" that stops all neutrons but in theory would allow hypothetical mirror neutrons to pass through. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.

Oak Ridge National Laboratory’s Mitch Allmond works with the Facility for Rare Isotope Beams Decay Station initiator, which combined diverse detectors for FRIB’s first experiment. Credit: Robert Grzywacz/ORNL, U.S. Dept. of Energy

Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s Oak Ridge National Laboratory have a hand in 10 of its first 34 experiments.

Physicist Charles Havener uses the NASA end station at ORNL’s Multicharged Ion Research Facility to simulate the origin of X-ray emissions from space. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists are using Oak Ridge National Laboratory’s Multicharged Ion Research Facility to simulate the cosmic origin of X-ray emissions resulting when highly charged ions collide with neutral atoms and molecules, such as helium and gaseous hydrogen.

Oak Ridge National Laboratory researchers developed a single burner cooking appliance powered by a blend of 50% hydrogen and natural gas, reducing emissions that contribute to the carbon footprint. Credit: ORNL, U.S. Dept. of Energy

A prototype cooking appliance developed by Oak Ridge National Laboratory uses a 50% blend of hydrogen and natural gas, offering an alternative to safely reduce emissions that contribute to the nation’s carbon footprint.

A zoomed in view of downtown Chattanooga’s sensors, which allowed the researchers to create building occupancy schedules that could enable improved energy efficiency and faster emergency responses. Credit: Andy Berres/ORNL, U.S. Dept. of Energy

Every day, hundreds of thousands of commuters across the country travel from houses, apartments and other residential spaces to commercial buildings — from offices and schools to gyms and grocery stores.

Oak Ridge National Laboratory researchers built a prototype natural gas furnace that uses acidic gas reduction technology to remove or trap potentially environmentally harmful emissions. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel solution to reduce the environmental impact of natural gas-condensing furnaces commonly used in U.S. homes.

Brian Fricke

The American Society of Heating, Refrigeration and Air-Conditioning Engineers, or ASHRAE, selected Oak Ridge National Laboratory’s Brian Fricke as one of 25 members elevated to fellow grade during its 2022 winter conference.

An international team of researchers used Summit to model spin, charge and pair-density waves in cuprates, a type of copper alloy, to explore the materials’ superconducting properties. The results revealed new insights into the relationships between these dynamics as superconductivity develops. Credit: Jason Smith/ORNL

A study led by researchers at ORNL used the nation’s fastest supercomputer to close in on the answer to a central question of modern physics that could help conduct development of the next generation of energy technologies.