Skip to main content
A researcher works in a lab in the Radiochemical Engineering and Development Center, or REDC,  at ORNL’s main campus. The REDC provides world-class capabilities in isotope production, research and development, source fabrication, and the distribution of various unique isotopes. Here, experts handle some of the most exotic materials in the world. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

A series of new classes at Pellissippi State Community College will offer students a new career path — and a national laboratory a pipeline of workers who have the skills needed for its own rapidly growing programs.

A person holding a pen in their right hand and a paper in their left looks at a sign on the wall.

Four nuclear nonproliferation staff members from the Department of Energy’s Oak Ridge National Laboratory were recognized as part of the 2021 Outstanding Security Team awarded by the Secretary of Energy for contributions to the Material Control and Accountability Technical Qualification Program Pilot.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.

Stephen Dahunsi. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Stephen Dahunsi’s desire to see more countries safely deploy nuclear energy is personal. Growing up in Nigeria, he routinely witnessed prolonged electricity blackouts as a result of unreliable energy supplies. It’s a problem he hopes future generations won’t have to experience.

A LiDAR survey of a local stream collected from one of ORNL’s drones. Credit: Andrew Duncan/ORNL, U.S. Dept. of Energy

The Autonomous Systems group at ORNL is in high demand as it incorporates remote sensing into projects needing a bird’s-eye perspective.

Aerial view of hurricane damage, with computer-generated utility pole detection.

A team of researchers from ORNL has created a prototype system for detecting and geolocating damaged utility poles in the aftermath of natural disasters such as hurricanes.

Alice Perrin is a Distinguished Staff Fellow and materials scientist at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Alice Perrin is passionate about scientific research, but also beans — as in legumes.

Ben Thomas poses with Dr. Richard Mu (Tennessee State University), Moody Altamimi (ORNL), Dr. Lin Li (Tennessee State University), and Ja’ Wanda Grant (ORNL) during a visit to ORNL to discuss education programs

Ben Thomas recalled the moment he, as a co-op student at ORNL, fell in love with computer programming. “It was like magic.” Almost five decades later, he strives to bring the same feeling to students through education and experience in fields that could benefit nuclear nonproliferation.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.