Skip to main content
Credit: NAIC Arecibo Observatory, a facility of the NSF; (INSET) Michelle Negron, National Science Foundation

For more than half a century, the 1,000-foot-diameter spherical reflector dish at the Arecibo Observatory in Puerto Rico was the largest radio telescope in the world. Completed in 1963, the dish was built in a natural sinkhole, with the telescope’s feed antenna suspended 500 feet above the dish on a 1.8-million-pound steel platform. Three concrete towers and more than 4 miles of steel cables supported the platform.

Yarom Polsky studio portrait

Yarom Polsky, director of the Manufacturing Science Division, or MSD, at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the American Society of Mechanical Engineers, or ASME.

Upgrades to the particle accelerator enabling the record 1.7-megawatt beam power at the Spallation Neutron Source included adding 28 high-power radio-frequency klystrons (red tubes) to provide higher power for the accelerator. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory set a world record when its particle accelerator beam operating power reached 1.7 megawatts, substantially improving on the facility’s original design capability.

top view of cicada wing

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to products with inherently antibacterial surfaces that are more effective than current chemical treatments.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Herwig shared the impacts of neutron science with Secretary of Energy Jennifer Granholm during a tour of SNS in November 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Ken Herwig's scientific drive crystallized in his youth when he solved a tough algebra word problem in his head while tossing newspapers from his bicycle. He said the joy he felt in that moment as a teenager fueled his determination to conquer mathematical mysteries. And he did.

3D supernova simulations

As a result of largescale 3D supernova simulations conducted on the Oak Ridge Leadership Computing Facility’s Summit supercomputer by researchers from the University of Tennessee and Oak Ridge National Laboratory, astrophysicists now have the most complete picture yet of what gravitational waves from exploding stars look like. 

Simulations performed on Oak Ridge National Laboratory’s Summit supercomputer generated one of the most detailed portraits to date of how turbulence disperses heat through ocean water under realistic conditions. Credit: Miles Couchman

Simulations performed on the Summit supercomputer at ORNL revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.

ORNL’s Yun Liu stands before one of the 10 laser comb-based beam diagnostics stations at the Spallation Neutron Source. The laser comb solves the longstanding problem of measuring changes in the beam across time. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When opportunity meets talent, great things happen. The laser comb developed at ORNL serves as such an example.

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.