Skip to main content
An illustration shows how the composite is pressed into a seamless aluminum liner, which is then sealed with an aluminum powder cap. The research is sponsored by the DOE Isotope Program. Credit: Chris Orosco/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a method to simplify one step of radioisotope production — and it’s faster and safer.

non-powered dam

Although more than 92,000 dams populate the country, the vast majority — about 89,000 — do not generate electricity through hydropower.

ORNL Image

For many scientists and engineers, the first real test of their mettle comes not in a classroom, but in a lab or the field, where hands-on experience can teach volumes. For Susan Hogle, that hands-on experience just happened to be with material that was too hot to handle—literally....

ORNL researcher Xiaobing Liu  works in the laboratory’s Building Technologies Research and Integration Center.

As a boy growing up in China, Xiaobing Liu knew all about Oak Ridge and the World War II Manhattan Project. He had no idea that he would one day work at DOE’s Oak Ridge National Laboratory, the Secret City’s successor. Liu is a lead researcher in geothermal heat pump (GHP) techn...

Natl-Hydropower-Map-2016-phres3_crop.png
Oak Ridge National Laboratory researchers have produced the next generation of the National Hydropower Map – a visualization tool that provides updated statistics on overall capacity and performance on the nation’s hydropower fleet. The map is part of the lab’s National Hydropower ...
By producing 50 grams of plutonium-238, Oak Ridge National Laboratory researchers have demonstrated the nation’s ability to provide a valuable energy source for deep space missions.

With the production of 50 grams of plutonium-238, researchers at the Department of Energy’s Oak Ridge National Laboratory have restored a U.S. capability dormant for nearly 30 years and set the course to provide power for NASA and other missions.

ORNL Image

Photovoltaic spray paint could coat the windows and walls of the future if scientists are successful in developing low-cost, flexible solar cells based on organic polymers. Scientists at the Department of Energy’s Oak Ridge National Laboratory recently discovered an unanticipated factor in the performance of polymer-based solar devices that gives new insight on how these materials form and function.