Skip to main content
SHARE
Publication

Application of High Performance Computing for Simulating the Unstable Dynamics of Dilute Spark-Ignited Combustion...

Publication Type
Conference Paper
Book Title
Understanding Complex Systems: International Conference on Theory and Application In Nonlinear Dynamics (ICAND2012)
Publication Date
Page Numbers
259 to 270
Publisher Location
United States of America
Conference Name
International Conference on Theory and Applications of Nonlinear Dynamics (ICAND 2012)
Conference Location
Seattle, Washington, United States of America
Conference Sponsor
Springer
Conference Date
-

In collaboration with a major automotive manufacturer, we are using computational simulations of in-cylinder combustion to understand the multi-scale nonlinear physics of the dilute stability limit. Because some key features of dilute combustion can take thousands of successive cycles to develop, the computation time involved in using complex models to simulate these effects has limited industrys ability to exploit simulations in optimizing advanced engines. We describe a novel approach for utilizing parallel computations to reveal long-timescale features of dilute combustion without the need to simulate many successive engine cycles in series. Our approach relies on carefully guided, concurrent, single-cycle simulations to create metamodels that preserve the long-timescale features of interest. We use a simplified combustion model to develop and demonstrate our strategy for adaptively guiding the concurrent simulations to generate metamodels. We next will implement this strategy with higher-fidelity, multi-scale combustion models on large computing facilities to generate more refined metamodels. The refined metamodels can then be used to accelerate engine development because of their efficiency. Similar approaches might also be used for rapidly exploring the dynamics of other complex multi-scale systems that evolve with serial dependency on time.