Skip to main content
CO2 release by mild heating of the BIG-bicarbonate solid. The released CO2 gas is trapped in the orange balloon, while the released water vapors are trapped by condensation in the ice-cooled U-shaped tube. Credit: Neil J. Williams and Erick Holguin.

Scientists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed a process that could remove CO2 from coal-burning power plant emissions in a way that is similar to how soda lime works in scuba diving rebreathers. Their research, published January 31 in...

Researchers used machine learning methods on the ORNL Compute and Data Environment for Science, or CADES, to map vegetation communities in the Kougarok Watershed on the Seward Peninsula of Alaska. The colors denote different types of vegetation, such as w

A team of scientists led by Oak Ridge National Laboratory used machine learning methods to generate a high-resolution map of vegetation growing in the remote reaches of the Alaskan tundra.

ORNL scientists used commuting behavior data from East Tennessee to demonstrate how machine learning models can easily accept new data, quickly re-train themselves and update predictions about commuting patterns. Credit: April Morton/Oak Ridge National La

Oak Ridge National Laboratory geospatial scientists who study the movement of people are using advanced machine learning methods to better predict home-to-work commuting patterns.

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

Jon Poplawsky of Oak Ridge National Laboratory combines atom probe tomography (revealed by this LEAP 4000XHR instrument) with electron microscopy to characterize the compositions, structures, and functions of materials for energy and information technolog

Jon Poplawsky, a materials scientist at the Department of Energy’s Oak Ridge National Laboratory, develops and links advanced characterization techniques that improve our ability to see and understand atomic-scale features of diverse materials

Picture2.png

Oak Ridge National Laboratory scientists studying fuel cells as a potential alternative to internal combustion engines used sophisticated electron microscopy to investigate the benefits of replacing high-cost platinum with a lower cost, carbon-nitrogen-manganese-based catalyst.

Natalie Griffiths kneading in watershed at ORNL

Growing up, Natalie Griffiths dreamed of playing shortstop for the Toronto Blue Jays. With a stint on the Canadian national women’s baseball team under her belt, Griffiths has retired her glove and now fields scientific questions about carbon and nutrient cycling and water quality ...

By producing 50 grams of plutonium-238, Oak Ridge National Laboratory researchers have demonstrated the nation’s ability to provide a valuable energy source for deep space missions.

With the production of 50 grams of plutonium-238, researchers at the Department of Energy’s Oak Ridge National Laboratory have restored a U.S. capability dormant for nearly 30 years and set the course to provide power for NASA and other missions.

Processing plutonium-238

Since its 1977 launch, NASA’s Voyager 1 spacecraft has travelled farther than any other piece of human technology. It is also the only human-made object to have entered interstellar space. More recently, the agency’s New Horizons mission flew past Pluto on July 14, giving us our first close-up lo...