Skip to main content
Researchers used the open-source Community Earth System Model to simulate the effects that extreme climatic conditions have on processes like land carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers from Oak Ridge National Laboratory and Northeastern University modeled how extreme conditions in a changing climate affect the land’s ability to absorb atmospheric carbon — a key process for mitigating human-caused emissions. They found that 88% of Earth’s regions could become carbon emitters by the end of the 21st century. 

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

An Oak Ridge National Laboratory study compared classical computing techniques for compressing data with potential quantum compression techniques. Credit: Getty Images

A study led by Oak Ridge National Laboratory researchers identifies a new potential application in quantum computing that could be part of the next computational revolution.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.

VA_healthcare_dataset
Oak Ridge National Laboratory has partnered with the Department of Veterans Affairs to develop methods and algorithms to mine the VA’s health data more efficiently. The resulting novel, secure platform promises to improve the health and wellbeing of millions of veterans through better understanding of underlying causes of diseases and conditions, hereditary factors and health history.
ORNL_iESM_model

A new integrated computational model reduces uncertainty in climate predictions by bridging Earth systems with energy and economic models and large-scale human impact data. Co-developed by Oak Ridge National Laboratory, the novel integrated Earth system model, or iESM, leverages the power of supercomputers, including ORNL’s Titan, to couple biospheric feedbacks from oceans, atmosphere and land with human activity, such as fossil fuel emissions, agriculture and land use.

Computing_Quantum_deep

In a first for deep learning, an Oak Ridge National Laboratory-led team is bringing together quantum, high-performance and neuromorphic computing architectures to address complex issues that, if resolved, could clear the way for more flexible, efficient technologies in intelligent computing.

An ORNL report provides best practices for electric utilities using drones to monitor transmission systems.
Electric utilities seeking to enhance worker safety and system reliability by using drones to inspect their transmission systems can look to a new report by Oak Ridge National Laboratory researchers to help guide their efforts. The report by ORNL’s Unmanned Aerial Systems Research Ce...
 ORNL scientists studied ways to enhance the proposed memory cell performance and minimize access times and energies, yielding a novel cryogenic, or low-temperature, design that may resolve a memory storage bottleneck.
Scientists at Oak Ridge National Laboratory have proposed a novel cryogenic, or low-temperature, memory cell circuit design that may resolve a memory storage bottleneck, accelerating the pathway to exascale and quantum computing. The proposed design converges write, read and reset ...