Skip to main content
An ORNL-led team developed a variable control mechanism to enable precision de-icing on urban roads, using roadway data from the City of Knoxville in Tennessee. Credit: Jason Richards/Oak Ridge National Laboratory, U.S. Dept. of Energy

A precision approach to treating snow- and ice-covered roads, developed by an Oak Ridge National Laboratory-led research team, aims to help cities effectively allocate resources and expand coverage on roadways. The combined software and hardware technology analyzes existing city data and uses high-resolution modeling to identify areas most vulnerable to drivers during hazardous weather conditions.

A bacterial species known as Desulfitobacterium hafniense uses unsubstituted purine to form purinyl-cobamide, a “helper molecule” required to enzymatically break down environmental toxins. Credit: Frank Löffler/Oak Ridge National Laboratory, U.S. Dept. of

An Oak Ridge National Laboratory-led team discovered a function of certain microbes that produces a new derivative of vitamin B12, which is crucial to a cell’s ability to perform life-sustaining metabolic activities. Their findings could ultimately open avenues for novel environmental and water clean-up strategies.

A research team, including scientists from Oak Ridge National Laboratory, Ames Laboratory and Lawrence Livermore National Laboratory, illuminated the mechanisms that create stability and strength in a new class of aluminum alloys. Credit: Orlando R. Rios,
A multi-laboratory research team led by Oak Ridge National Laboratory used neutrons, x-rays and computational modeling to “see” the atomic structures inside a new class of aluminum-cerium alloys created for automotive and aerospace applications.
Robert Wagner is director of the National Transportation Research Center at Oak Ridge National Laboratory. Photo credit: Jason Richards, ORNL.

Some engineers are attracted to fuels and engine research out of a love of cars. For Robert Wagner, however, enthusiasm for combustion science and chaos theory drew him to this area of research at Oak Ridge National Laboratory. After years of delivering breakthroughs for cleane...

Eugene Mamontov and the BASIS beam line at the Spallation Neutron Source at ORNL. Photo credit: Jason Richards, ORNL.
Eugene Mamontov’s background in both basic and applied science has made him a valued partner for scientists who come to the Spallation Neutron Source at ORNL in search of a better understanding of the water dynamics in their research—projects as diverse as studying plant cellulos...
David Weston

David Weston became fascinated with plant genetics and ecology in college, and now with the support provided by the DOE Office of Science Early Career Research Program, he will link those fields as he studies plant-microbe symbiosis. The research will focus on sphagnum moss, a dominant plant of n...

Rose Ruther

In the quest for better batteries, Rose Ruther has found that the positives nearly always outweigh the negatives, and that’s what keeps her coming back to the lab. Ruther works on novel materials to create batteries with higher energy density at a lower cost as part of the Roll to Roll Manufactur...

Oak Ridge National Laboratory researcher Ho Nyung Lee regards his research in novel materials as a “career hobby.”
Some hobbies, like woodworking, require a careful eye for planning and construction. Others, like building a ship in a bottle, need a steady hand and utmost precision.
As hurricanes formed in the Gulf Coast, ORNL activated a computing technique to quickly gather building structure data from Texas’ coastal counties. Credit: Mark Tuttle/Oak Ridge National Laboratory, U.S. Dept. of Energy

Geospatial scientists at Oak Ridge National Laboratory have developed a novel method to quickly gather building structure datasets that support emergency response teams assessing properties damaged by Hurricanes Harvey and Irma. By coupling deep learning with high-performance comp...

A novel, two-dimensional material “puckers” because its structure is composed of atoms that tile in the famous Cairo pentagonal pattern, opening exciting new opportunities for nanoelectronics. Credit: Christopher Rouleau and Kai Xiao/Oak Ridge National La
A semiconducting material with a puckered pentagonal atomic structure, characterized by Oak Ridge National Laboratory, could rival graphene and black phosphorus as a viable option for nanoscale electronics. The ORNL-led team studied a novel two-dimensional, or atomic-thin, layered...