Skip to main content
Lu Huang, USS industrial research engineer prepares a lightweighted advanced high strength steel component for neutron research at the Spallation Neutron Source’s VULCAN instrument.
The demand for lighter, stronger, and more durable materials for use in vehicles has never been higher. Companies are looking at new and advanced materials such as lightweight advanced high-strength steels (AHSS) to develop automotive components that help increase gas efficiency, red...
An Oak Ridge National Laboratory–led team has developed super-stretchy polymers with amazing self-healing abilities that could lead to longer-lasting consumer products.

An Oak Ridge National Laboratory–led team has developed super-stretchy polymers with amazing self-healing abilities that could lead to longer-lasting consumer products.

Researchers at ORNL developed a scalable processing technique to 3D print a plant-based composite material. Credit: Ngoc Nguyen/Oak Ridge National Laboratory, U.S. Dept. of Energy

A scalable processing technique developed by Oak Ridge National Laboratory uses plant-based materials for 3D printing and offers a promising additional revenue stream for biorefineries.

ORNL researchers insert a device to be tested on the SI-GRID platform. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy
Oak Ridge National Laboratory engineers have devised a testbed that lets them mimic high-voltage equipment in a safe, low-voltage setting.
New research about the transfer of heat—fundamental to all materials—suggests that in thermal insulators, heat is conveyed by atomic vibrations and by random hopping of energy from atom to atom.
A discovery by scientists at the Department of Energy’s Oak Ridge National Laboratory supports a century-old theory by Albert Einstein that explains how heat moves through everything from travel mugs to engine parts.
The electromagnetic isotope separator system operates by vaporizing an element such as ruthenium into the gas phase, converting the molecules into an ion beam, and then channeling the beam through magnets to separate out the different isotopes.

A tiny vial of gray powder produced at the Department of Energy’s Oak Ridge National Laboratory is the backbone of a new experiment to study the intense magnetic fields created in nuclear collisions.

Micael Starke

When Michael Starke leaves the lab each day, he continues his work, in a sense, at home. The power systems engineer is developing methods to precisely control building electrical loads—and in his off hours, he has automated his own home with upwards of 90 smart devices to manage everything from heat...

Stealth Mark image 2.jpg

StealthCo, Inc., an Oak Ridge, Tenn.-based firm doing business as Stealth Mark, has exclusively licensed an invisible micro-taggant from the Department of Energy’s Oak Ridge National Laboratory. The anticounterfeiting technology features a novel materials coding system that uses an infrared marker for identification.

Default image of ORNL entry sign
Two Oak Ridge National Laboratory researchers specializing in neutron and chemical science are among 84 recipients of Department of Energy’s Office of Science Early Career Research Program awards. The Early Career Research Program, now in its ninth year, supports...
EPSP_gene_study2_ORNL.jpg

For decades, biologists have believed a key enzyme in plants had one function—produce amino acids, which are vital to plant survival and also essential to human diets. But for Wellington Muchero, Meng Xie and their colleagues, this enzyme does more than advertised. They had run a series of experiments on poplar plants that consistently revealed mutations in a structure of the life-sustaining enzyme that was not previously known to exist.