Skip to main content
2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

As a scientist at Oak Ridge National Laboratory, Tugba Turnaoglu is investigating new thermal energy storage materials and ways to incorporate them into cost-effective and energy-efficient heat pump designs. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

The common sounds in the background of daily life – like a refrigerator’s hum, an air conditioner’s whoosh and a heat pump’s buzz – often go unnoticed. These noises, however, are the heartbeat of a healthy building and integral for comfort and convenience.

Jonathan Harter, a technical professional in ORNL’s Engineering Science and Technology Directorate, uses a robot and other automated methods to disassemble electric vehicle batteries for recycling or reuse in the electric grid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

After being stabilized in an ambulance as he struggled to breathe, Jonathan Harter hit a low point. It was 2020, he was very sick with COVID-19, and his job as a lab technician at ORNL was ending along with his research funding.

Mirko Musa was always fascinated by the power of rivers, specifically how these mighty waterways sculpt landscapes. Now, as a water power researcher, he’s finding ways to harness that power and protect rivers at the same time. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Mirko Musa spent his childhood zigzagging his bike along the Po River. The Po, Italy’s longest river, cuts through a lush valley of grain and vegetable fields, which look like a green and gold ocean spreading out from the river’s banks. 

ORNL researchers found that a battery anode film, made by Navitas Systems using a dry process, was strong and flexible. These characteristics make a lithium-ion battery safer and more durable. Credit: Navitas Systems

Early experiments at the Department of Energy’s Oak Ridge National Laboratory have revealed significant benefits to a dry battery manufacturing process. This eliminates the use of solvents and is more affordable, while showing promise for delivering a battery that is durable, less weighed down by inactive elements, and able to maintain a high capacity after use. 

Mali Balasubramanian made a rewarding mid-career shift to focus on studying new battery materials and systems using X-ray spectroscopy and other methods. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Having passed the midpoint of his career, physicist Mali Balasubramanian was part of a tight-knit team at a premier research facility for X-ray spectroscopy. But then another position opened, at ORNL— one that would take him in a new direction.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

The illustrations show how the correlation between lattice distortion and proton binding energy in a material affects proton conduction in different environments. Mitigating this interaction could help researchers improve the ionic conductivity of solid materials.

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.

ORNL will use state-of-the-art R&D tools at the Battery Manufacturing Facility to develop new methods for separating and reclaiming valuable materials from spent EV batteries.

The use of lithium-ion batteries has surged in recent years, starting with electronics and expanding into many applications, including the growing electric and hybrid vehicle industry. But the technologies to optimize recycling of these batteries have not kept pace.