Skip to main content
ORNL scientists are combining their expertise in environmental science, physics, sensors and additive manufacturing to create model fish for use in testing of hydropower turbine designs. The project supports healthy ecosystems and hydropower—the nation’s largest renewable energy resource. Photo credit: Oak Ridge National Laboratory, U.S. Dept. of Energy.

Hydropower developers must consider many factors when it comes time to license a new project or renew an existing one: How can environmental impacts be mitigated, including to fish populations?

Singanallur “Venkat” Venkatakrishnan shows students at Northwest Middle School how to make a “hoop glider” as part of ORNL’s Engineers Week activities. Credit: Abby Bower/Oak Ridge National Laboratory, U.S. Dept. of Energy.

“Engineering is about building things to help others.” Before diving into a longer explanation, that’s how Singanallur “Venkat” Venkatakrishnan, an electrical and computer engineer ORNL, described engineering to students at Northwest Middle School.

Joe Paddison a Eugene P. Wigner Fellow, studies how statistical sampling methods can be coupled with neutron scattering experiments of magnetic and other new materials to provide richer information. Image credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Department of Energy.

Joe Paddison, a Eugene P. Wigner Fellow at the Department of Energy’s Oak Ridge National Laboratory, believes there’s more information to be found in neutron scattering data than scientists like himself might expect.

Starch granules

Scientists at the Department of Energy’s Oak Ridge National Laboratory have developed a new method to peer deep into the nanostructure of biomaterials without damaging the sample. This novel technique can confirm structural features in starch, a carbohydrate important in biofuel production.

To understand the electronic structures of solids and predict their properties, ORNL’s Valentino Cooper uses density functional theory (DFT), which models how many electrons are in a region rather than where those electrons are. “DFT essentially presents one electron existing in a ‘sea foam’ and tells how dense that foam is,” he said. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

Valentino (“Tino”) Cooper of the Department of Energy’s Oak Ridge National Laboratory uses theory, modeling and computation to improve fundamental understanding of advanced materials for next-generation energy and information technologies.

Examples from the ORNL Overhead Vehicle Dataset, generated with images captured by GRIDSMART cameras. Image: Thomas Karnowski/ORNL

Each year, approximately 6 billion gallons of fuel are wasted as vehicles wait at stop lights or sit in dense traffic with engines idling, according to US Department of Energy estimates.

Peter Wang

Peter Wang is focused on robotics and automation at the Department of Energy’s Manufacturing Demonstration Facility at ORNL, working on high-profile projects such as the MedUSA, a large-scale hybrid additive manufacturing machine.

Chris Ellis is applying his expertise in computational biology and microbiology to explore the human and soil microbiomes for clues to degenerative brain disease, as well as pathways to improved bioenergy crops.

After several years in the private sector exploring the unknown origins of neurodegenerative brain disorders such as Alzheimer’s, Chris Ellis thinks one of the keys to solving the mystery is at Oak Ridge National Laboratory: the world’s most powerful supercomputer.

microscope lens and lithium battery prototype

The formation of lithium dendrites is still a mystery, but materials engineers study the conditions that enable dendrites and how to stop them.

Scanning probe microscopes use an atom-sharp tip—only a few nanometers thick—to image materials on a nanometer length scale. The probe tip, invisible to the eye, is attached to a cantilever (pictured) that moves across material surfaces like the tone arm on a record player. Credit: Genevieve Martin/Oak Ridge National Laboratory; U.S. Dept. of Energy.

Liam Collins was drawn to study physics to understand “hidden things” and honed his expertise in microscopy so that he could bring them to light.