Skip to main content
ORNL’s non-disruptive air leak detector captures air escaping from exterior walls and uses refractive imaging to calculate the leakage flow rate. Credit: ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory has developed a method to detect and measure air leaking from a building’s walls and roof that is quicker, cheaper and less disruptive to occupants.

Scientists genetically engineered bacteria for itaconic acid production, creating dynamic controls that separate microbial growth and production phases for increased efficiency and acid yield. Credit: NREL

A research team led by Oak Ridge National Laboratory bioengineered a microbe to efficiently turn waste into itaconic acid, an industrial chemical used in plastics and paints.

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Jianlin Li, leader of the Energy Storage and Conversion Manufacturing Group, directs the development of advanced manufacturing schemes and pilot-scale devices into emerging energy storage and conversion research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In his career focused on energy storage science, Jianlin Li has learned that discovering new ways to process and assemble batteries is just as important as the development of new materials.

Heavy-duty vehicles contribute 23% of transportation emissions of greenhouse gases and account for almost one-quarter of the fuel consumed annually in the U.S. Credit: Chris Bair/Unsplash

Through a consortium of Department of Energy national laboratories, ORNL scientists are applying their expertise to provide solutions that enable the commercialization of emission-free hydrogen fuel cell technology for heavy-duty

Parans Paranthaman, a researcher in the Chemical Sciences Division at ORNL, coordinated research efforts to study the filter efficiency of the N95 material. His published results represent one of the first studies on polypropylene as it relates to COVID-19. Credit: ORNL/U.S. Dept. of Energy

When COVID-19 was declared a pandemic in March 2020, Oak Ridge National Laboratory’s Parans Paranthaman suddenly found himself working from home like millions of others.

ORNL researchers used electron beam powder bed fusion to produce refractory metal molybdenum, which remained crack free and dense, proving its viability for additive manufacturing applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory scientists proved molybdenum titanium carbide, a refractory metal alloy that can withstand extreme temperature environments, can also be crack free and dense when produced with electron beam powder bed fusion. 

Targeted alpha therapy can deliver radiation to specific cells, with minimal effect on surrounding, healthy cells. Credit: Michelle Lehman and Jaimee Janiga/ORNL, U.S. Dept. of Energy

A rare isotope in high demand for treating cancer is now more available to pharmaceutical companies developing and testing new drugs.

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.