Skip to main content
The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

Wire arc additive manufacturing allowed this robot arm at ORNL to transform metal wire into a complete steam turbine blade like those used in power plants. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL became the first to 3D-print large rotating steam turbine blades for generating energy in power plants.

The AI agent, incorporating a language model-based molecular generator and a graph neural network-based molecular property predictor, processes a set of user-provided molecules (green) and produces/suggests new molecules (red) with desired chemical/physical properties (i.e. excitation energy). Image credit: Pilsun You, Jason Smith/ORNL, U.S. DOE

A team of computational scientists at ORNL has generated and released datasets of unprecedented scale that provide the ultraviolet visible spectral properties of over 10 million organic molecules. 

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

2023 Battelle Distinguished Inventors

Four scientists affiliated with ORNL were named Battelle Distinguished Inventors during the lab’s annual Innovation Awards on Dec. 1 in recognition of being granted 14 or more United States patents.

SM2ART team members receive the CAMX Combined Strength Award at the Georgia World Congress Center in Atlanta. Pictured here are, from left, ORNL’s Dan Coughlin, Sana Elyas, Halil Tekinalp, Amber Hubbard, Soydan Ozcan; University of Maine’s Susan MacKay, Angelina Buzzelli, Scott Tomlinson, Wesley Bisson; and ORNL’s Matt Korey and Vlastimil Kunc. Credit: University of Maine

The Hub & Spoke Sustainable Materials & Manufacturing Alliance for Renewable Technologies, or SM2ART, program has been honored with the composites industry’s Combined Strength Award at the Composites and Advanced Materials Expo, or CAMX, 2023 in Atlanta. This distinction goes to the team that applies their knowledge, resources and talent to solve a problem by making the best use of composites materials.

red and green sphagnum moss

A type of peat moss has surprised scientists with its climate resilience: Sphagnum divinum is actively speciating in response to hot, dry conditions. 

ORNL’s additive manufacturing compression molding, or AMCM, technology can produce composite-based, lightweight finished parts for airplanes, drones or vehicles in minutes and could acclerate decarbonization for the automobile and aeropsace industries. 

An Oak Ridge National Laboratory-developed advanced manufacturing technology, AMCM, was recently licensed by Orbital Composites and enables the rapid production of composite-based components, which could accelerate the decarbonization of vehicles

3d prnited lunar rover wheel based on a NASA design

Researchers at the Department of Energy’s Oak Ridge National Laboratory, in collaboration with NASA, are taking additive manufacturing to the final frontier by 3D printing the same kind of wheel as the design used by NASA for its robotic lunar rover, demonstrating the technology for specialized parts needed for space exploration.

Benefit breakdown, 3D printed vs. wood molds

Oak Ridge National Laboratory researchers have conducted a comprehensive life cycle, cost and carbon emissions analysis on 3D-printed molds for precast concrete and determined the method is economically beneficial compared to conventional wood molds.